§1. Bất đẳng thức

Đồng Văn Hoàng

Cho a,b,c>0 và a+b+c=2

CMR: \(\sqrt{a^2+\dfrac{1}{a^2}}\)+\(\sqrt{b^2+\dfrac{1}{b^2}}\)+\(\sqrt{c^2+\dfrac{1}{c^2}}\) \(\le\)\(\sqrt{\dfrac{97}{4}}\)

Hung nguyen
25 tháng 10 2017 lúc 9:09

\(P=\sqrt{a^2+\dfrac{1}{a^2}}+\sqrt{b^2+\dfrac{1}{b^2}}+\sqrt{c^2+\dfrac{1}{c^2}}\)

\(\Leftrightarrow\sqrt{\dfrac{97}{4}}P=\sqrt{4+\dfrac{81}{4}}\sqrt{a^2+\dfrac{1}{a^2}}+\sqrt{4+\dfrac{81}{4}}\sqrt{b^2+\dfrac{1}{b^2}}+\sqrt{4+\dfrac{81}{4}}\sqrt{c^2+\dfrac{1}{c^2}}\)

\(\ge\left(2a+\dfrac{9}{2a}\right)+\left(2b+\dfrac{9}{2b}\right)+\left(2c+\dfrac{9}{2c}\right)\)

\(=2\left(a+b+c\right)+\dfrac{9}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\ge4+\dfrac{9}{2}.\dfrac{9}{a+b+c}=4+\dfrac{81}{4}=\dfrac{97}{4}\)

\(\Rightarrow P\ge\sqrt{\dfrac{97}{4}}\)

PS: Lần sau chép đề cẩn thận nhé bạn.

Bình luận (2)
Feed Là Quyền Công Dân
25 tháng 10 2017 lúc 20:45

Nếu là \(\ge \) thì easy rồi. Áp dụng BĐT Min....

\(VT=\sqrt{a^2+\dfrac{1}{a^2}}+\sqrt{b^2+\dfrac{1}{b^2}}+\sqrt{c^2+\dfrac{1}{c^2}}\)

\(\ge\sqrt{\left(a+b+c\right)^2+\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2}\)

\(\ge\sqrt{\left(a+b+c\right)^2+\left(\dfrac{9}{a+b+c}\right)^2}\)

\(\ge\sqrt{2^2+\left(\dfrac{9}{2}\right)^2}=\sqrt{\dfrac{97}{4}}=VP\)

Khi \(a=b=c=\frac{2}{3}\)

Bình luận (0)

Các câu hỏi tương tự
Xem chi tiết
Lightning Farron
Xem chi tiết
Nguyễn Thị Duyên
Xem chi tiết
phạm thảo
Xem chi tiết
phạm thảo
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
đấng ys
Xem chi tiết
Nhã Doanh
Xem chi tiết
Đức Huy ABC
Xem chi tiết