Hỏi đáp Toán lớp 10

Người hay giúp bạn khác trả lời bài tập sẽ trở thành học sinh giỏi. Người hay hỏi bài thì không. Còn bạn thì sao?

Bạn nào giúp mình giải đề này nhé !!! okhihi

Câu 1 ( 3,0 điểm ) :
a) Đơn giản biểu thức A = \(\sqrt{9+4\sqrt{5}}+\sqrt{9-4\sqrt{5}}\).

b) Cho ba số nguyên dương liên tiếp x, y và z thỏa mãn

\(\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}+\dfrac{y}{x}+\dfrac{x}{z}+\dfrac{z}{y}\)là một số nguyên. Tính giá trị của x + y + z .

Câu 2 ( 4,0 điểm ) :

a) Giải phương trình 3x2 + 6x - 3 = \(\sqrt{\dfrac{x+7}{3}}\).

b) Giải hệ phương trình

\(\left\{{}\begin{matrix}x+y+\dfrac{1}{x}=\dfrac{9}{y}\\x+y-\dfrac{4}{y}=\dfrac{4x}{y^2}\end{matrix}\right.\).

u 3 ( 3,0 điểm ) :

Cho tam giác ABC vuông tại A. Đường cao AH = \(\dfrac{12a}{5}\); BC = 5a . Tính hai cạnh góc vuông theo a .

Câu 4 ( 4,0 điểm ) :

a) Tìm giá trị nhỏ nhất của \(P=x-\sqrt{x-2017}\).

b) Cho a, b,c là các số thực dương thỏa mãn a + b + c = 1

Chứng minh rằng :

\(\dfrac{ab}{a^2+b^2}+\dfrac{bc}{b^2+c^2}+\dfrac{ca}{c^2+a^2}+\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{15}{4}\).

Câu 5 ( 4,0 điểm ) :

a) Cho ABC là một tam giác cân tại A. Gọi X, Y là các điểm lần lượt thuộc các cạnh BC và AC sao cho XY song song với AB.Gọi I là tâm đường tròn ngoại tiếp tam giác CXY và E là trung điểm của BY. Chứng minh rằng \(\widehat{AEI}=90^o\).

b) Cho tam giác đều ABC nội tiếp đường tròn (O), M là điểm trên cung nhỏ BC, MA cắt BC tại D.

Chứng minh rằng MA = MB + MC và \(\dfrac{1}{MD}=\dfrac{1}{MB}+\dfrac{1}{MC}\).

Được cập nhật 10 giờ trước (20:55) 4 câu trả lời
Click để xem thêm, còn nhiều lắm! Gửi câu hỏi

...

Dưới đây là những câu hỏi có bài toán hay do Hoc24 lựa chọn.

Building.