Hai pt trừ cho nhau sau đó khai triển bằng dùng hằng đẳng thức được pt tích sau đó dùng phép thế.
đây là hệ pt đối xứng loại 2. có cách giải mà
Hai pt trừ cho nhau sau đó khai triển bằng dùng hằng đẳng thức được pt tích sau đó dùng phép thế.
đây là hệ pt đối xứng loại 2. có cách giải mà
Giải hệ phương trình sau:
PT 1: \(8xy^2-2x=1\)
PT 2: \(\sqrt{3+4x-y^2}-x.\sqrt[3]{\frac{x^2+y^2+2}{3}}=2\)
cho hệ phương trình
x-my=2-4m
mx+y=3m+1
1, chứng minh rằng hệ pt luôn có nghiệm với mọi giá trị của m
2,giả sử\(x_0\);\(y_o\)là nghiệm của hệ phương trình
chứng minh rằng \(x^2_0+y^2_0-5\left(x_o+y_0\right)\)luôn bằng một hằng số
Cho hàm số: \(y=f\left(x\right)=2\left(m-1\right)x+\frac{m\left(x-2\right)}{\left|x-2\right|}\)(m là tham số)
a) Tìm m để f(x) < 0 với mọi \(x\in\left[0;1\right]\)
b) Tìm m để đồ thị hàm số cắt trục hoành tại 1 điểm thuộc (1; 2)
cho hàm số y=\(\frac{x+2}{x-1}\) chứng minh biểu thức sau không phụ thuộc x: P=2(y')2 -y''(y-1)
Giải phương trình \(2x\sqrt{x-2}+x^2+\frac{1}{x}=3x+\frac{13}{2}\)
CHo a,b,c không âm t/m a+b+c=1
Tìm GTNN \(M=3\left(a^2b^2+b^2c^2+c^2a^2\right)+3\left(ab+bc+ca\right)+2\sqrt{a^2+b^2+c^2}\)
giải pt lượng giác :
1. cos^2 + sinx +1 = 0
2. cosx - cos2x =1/2
3. sinx - căn của 3 cosx = 1 ( căn của mỗi 3 thôi nhé )
Biện luận
1. tìm m để pt [ x^2 -1] = m^4 - m^2 +1 cos 4 nghiem phan biet ( [ ] la gia tri tuyet doi nhe )
2. giai va bien luan (theo tham so m) bat pt : (m-1)x +2 / x-2 < m+1
3. tim m de pt co 4 ngiem phan biet
(m-1)x^4 - 2(m+2)x^2 + 2m +1 +0
Giải phương trình x2 - 4x + 4 = \(\sqrt{-3x+6}\)
Giải phương trình lượng giác:
1.sin^2x + sin 2x = 3 cos^2x
2.sinx + cosx = 2√2 sinxcosx