áp dụng bất đẳng thức Bun-nhi-a ta có:
\(A^2\le3\left(a+b+c+ab+bc+ac\right)\le3\left(a+b+c+\frac{\left(a+b+c\right)^2}{3}\right)=4\)
=> A\(\le\)2(dpcm)
áp dụng bất đẳng thức Bun-nhi-a ta có:
\(A^2\le3\left(a+b+c+ab+bc+ac\right)\le3\left(a+b+c+\frac{\left(a+b+c\right)^2}{3}\right)=4\)
=> A\(\le\)2(dpcm)
cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2=1\).CMR
\(\dfrac{\sqrt{ab+2c^2}}{\sqrt{1+ab-c^2}}+\dfrac{\sqrt{bc+2a^2}}{\sqrt{1+bc-a^2}}+\dfrac{\sqrt{ca+2b^2}}{\sqrt{1+ca-b^2}}\ge2+ab+bc+ca\)
cho a,b,c>0.cmr
\(\sqrt{a^2+2b^2+ab}+\sqrt{b^2+2c^2+bc}+\sqrt{c^2+2a^2+ac}\ge2\left(a+b+c\right)\)
Cho a, b, c là số dương thỏa mãn a + b + c = 3. Chứng minh rằng:
\(\frac{\sqrt{3a+bc}}{a+\sqrt{3a+bc}}+\frac{\sqrt{3b+ac}}{a+\sqrt{3b+ac}}+\frac{\sqrt{3c+ab}}{a+\sqrt{3c+ab}}\ge2\)
Cho a,b,c > 0 và ab+bc+ca=1
CMR: \(\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}\ge2\left(a+b+c\right)\)
cho a,b,c>0, a+b+c=1. cm:
\(\sqrt{a+bc}+\sqrt{b+ac}+\sqrt{c+ab}>=\sqrt{ab}+\sqrt{bc}+\sqrt{ac}+1\)
Với a,b,c > 0 , chứng minh rằng
\(\sqrt{a^2+2b^2+ab}+\sqrt{b^2+2c^2+bc}+\sqrt{c^2+2a^2+ac}\ge2\left(a+b+c\right)\)
1.Cho a, b, c là các số không âm.
Chứng minh rằng:
\(a+b+c=\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\)
\(< =>a=b=c\)
2. cho a,b,c không âm
Cmr: \(a+b+c\ge\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\)
3. Cmr: với mọi số thực a, ta đều có:
\(\frac{a^2+2}{\sqrt{a^2+1}}\ge2\)
Dấu = xảy ra khi nào
Cho a>0 b>0 c>0 thỏa mãn a+b+c=1 tính gt bt
\(P=\sqrt{\frac{\left(a+bc\right)\left(b+ac\right)}{c+ab}}+\sqrt{\frac{\left(c+ab\right)\left(b+ac\right)}{a+bc}}+\sqrt{\frac{\left(c+ab\right)\left(a+bc\right)}{b+ac}}\)
cho a,b,c>0 va a+b+c=1
Tim GTNN cua \(P=\sqrt{\frac{ab}{c+ab}}+\sqrt{\frac{bc}{a+bc}}+\sqrt{\frac{ac}{b+ac}}....\)