Le Dinh Quan

Cho a,b,c>0 thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\). Chứng minh 

\(\sqrt{a+bc}+\sqrt{b+ac}+\sqrt{c+ab}\ge\sqrt{abc}+\sqrt{a}+\sqrt{b}+\sqrt{c}\)

Kiệt Nguyễn
4 tháng 6 2020 lúc 16:25

Theo giả thiết thì \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\Rightarrow ab+bc+ca=abc\)

Ta cần chứng minh: \(\Sigma\sqrt{a+bc}\ge\sqrt{abc}+\Sigma\sqrt{a}\)(*)

Thật vậy: (*) \(\Leftrightarrow\Sigma\sqrt{\frac{a^2+abc}{a}}\ge\sqrt{abc}+\Sigma\sqrt{a}\)

\(\Leftrightarrow\Sigma\sqrt{\frac{a^2+ab+bc+ca}{a}}\ge\sqrt{abc}+\Sigma\sqrt{a}\)\(\Leftrightarrow\Sigma\sqrt{\frac{\left(a+b\right)\left(a+c\right)}{a}}\ge\sqrt{abc}+\Sigma\sqrt{a}\)

\(\Leftrightarrow\text{​​}\Sigma\sqrt{bc\left(a+b\right)\left(a+c\right)}\ge abc+\sqrt{abc}\left(\Sigma\sqrt{a}\right)\)(Nhân cả hai vế của bất đẳng thức với \(\sqrt{abc}>0\))

\(\Leftrightarrow\Sigma\sqrt{\left(b^2+ab\right)\left(c^2+ac\right)}\ge abc+\Sigma a\sqrt{bc}\)

Bất đẳng thức cuối luôn đúng vì theo BĐT Cauchy-Schwarz, ta có: \(\Sigma\sqrt{\left(b^2+ab\right)\left(c^2+ac\right)}\ge\Sigma\left(bc+a\sqrt{bc}\right)=abc+\Sigma a\sqrt{bc}\text{​​}\)

Đẳng thức xảy ra khi a = b = c = 3

Bình luận (0)
 Khách vãng lai đã xóa
Quanglong Nguyen
26 tháng 6 2020 lúc 17:36

https://olm.vn/hoi-dap

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
Dung Đặng Phương
Xem chi tiết
Trần Lâm Thiên Hương
Xem chi tiết
Harry James Potter
Xem chi tiết
Phạm Vũ Thanh Nhàn
Xem chi tiết
Itachi Uchiha
Xem chi tiết
hung
Xem chi tiết
Vũ Thu Mai
Xem chi tiết
qqqqqqqqq
Xem chi tiết
Bao Nguyen Trong
Xem chi tiết