nè Cho a, b, c là ba số thực không âm và thỏa mãn a + b + c = 1. Chứng minh rằngcăn(5a + 4) + căn(5b + 4) + căn(5c + 4) >= 7- Mạng Giáo Dục Pitago.Vn – Giải pháp giúp em học toán vững vàng!
nè Cho a, b, c là ba số thực không âm và thỏa mãn a + b + c = 1. Chứng minh rằngcăn(5a + 4) + căn(5b + 4) + căn(5c + 4) >= 7- Mạng Giáo Dục Pitago.Vn – Giải pháp giúp em học toán vững vàng!
Cho a,b,c>=0 thoả mãn a+b+c=1
Chứng minh rằng√5a+4+√5b+4+√5c+4>=7
Cho \(a,b,c>0\) thỏa mãn \(a+b+c=62\)
Tìm GTLN của \(P=\sqrt{5a^2+38ab+21b^2}+\sqrt{5b^2+38bc+21c^2}+\sqrt{5c^2+38ca+21a^2}\)
Cho các số thực không âm a,b,ca,b,c thoả mãn a+b+c=1a+b+c=1. Chứng minh rằng :
\(\sqrt{a+\frac{\left(b-c\right)^2}{4}}+\sqrt{b+\frac{\left(c-a\right)^2}{4}}+\sqrt{c+\frac{\left(a-b\right)^2}{4}}\le\sqrt{3}+\left(1-\frac{\sqrt{3}}{2}\right)\left(\text{|
}a-b\text{|
}\right)+\text{|
}b-c\text{|
}+\text{|
}c-a\text{|
}.\)
Chứng minh \(\frac{a}{\sqrt{5a^2+\left(b+c\right)^2}}+\frac{b}{\sqrt{5b^2+\left(a+c\right)^2}}+\frac{c}{\sqrt{5c^2+\left(b+a\right)^2}}\le1\)với a,b,c thực dương
Giúp em vs ạ!
Với các số dương a, b, c sao cho \(ab^2+bc^2+ca^2\) , chứng minh rằng:
\(\sqrt[3]{a+7}+\sqrt[3]{b+7}+\sqrt[3]{c+7}\le2\left(a^4+b^4+c^4\right)\)
Ai giải giúp mk với bt khó v :<
À mà chỉ giải bằng bđt AM-GM nhé, nếu có thêm bổ đề thì chứng minh chi tiết hộ mk :)
1. Cho ba số thực dương a,b,c thoả mãn a+b+c=3
CMR : \(a.\sqrt[3]{3-b+c}+b.\sqrt[3]{3-c+a}+c.\sqrt[3]{3-a+b}\le3.\sqrt[3]{3}\)
2. Cho 3 số thực dương a,b,c thoả mãn abc=2
CMR: \(a^3+b^3+c^3\ge a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\)
3. Cho 2 số thực dương x,y thoả mãn x+y+xy=3
CMR: \(\sqrt{\frac{x^2}{x^2+3}}+\sqrt{\frac{y^2}{y^2+3}}\le1\)
Bài 1: Cho a,b,c là các số thực dương. Chứng minh rằng:
\(\sqrt{\frac{a+b+4c}{a+b}}+\sqrt{\frac{b+c+4a}{b+c}}+\sqrt{\frac{c+a+4b}{c+a}}\ge3\sqrt{3}.\)
Bài 2:Cho các số thực dương a,b,c thoả mãn abc=1. Chứng minh rằng:
\(\sqrt[3]{\left(\frac{2a}{ab+1}\right)^2}+\sqrt[3]{\left(\frac{2b}{bc+1}\right)^2}+\sqrt[3]{\left(\frac{2c}{ca+1}\right)^2}\ge3.\)
Giúp mình với! Mình cần gấp.
Cho các số thực dương a,b,c thoả mãn \(a^2b^2+b^2c^2+c^2a^2=3abc\). Chứng minh rằng \(\sqrt{\frac{a+b^2c}{2}}+\sqrt{\frac{b+c^2a}{2}}\sqrt{\frac{c+a^2b}{2}}\le\frac{3}{abc}\).
Giúp mình với, mình đang cần gấp
Cho các số thực DƯƠNG a, b, c thoả mãn \(a+b+c=abc\). Chứng minh rằng: \(ab+bc+ca\ge3+\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}\)