MIN A= \(\frac{b^2}{a^2}+\frac{c^2}{a^2}+\frac{a^2}{b^2}+\frac{c^2}{a^2}\)
áp dụng bất đẳng thức 2 số đố nhau luôn lớn hơn hoặc =2
suy ra MIN A =2+2=4
MIN A= \(\frac{b^2}{a^2}+\frac{c^2}{a^2}+\frac{a^2}{b^2}+\frac{c^2}{a^2}\)
áp dụng bất đẳng thức 2 số đố nhau luôn lớn hơn hoặc =2
suy ra MIN A =2+2=4
cho \(a,b,c>0\) thỏa mãn \(a^2>=b^2+c^2\)
tỉm \(MIN\) \(A=\frac{1}{a^2}\cdot\left(b^2+c^2\right)+a^2\left(\frac{1}{b^2}+\frac{1}{c^2}\right)\)
cho \(a,b,c>=0\) thỏa mãn \(a^2>=b^2+c^2\)
tìm \(MIN\) \(A=\frac{1}{a^2}\cdot\left(b^2+c^2\right)+a^2\cdot\left(\frac{1}{b^2}+\frac{1}{c^2}\right)\)
cho a;b;c>0 và nhỏ hơn 1 thỏa mãn ab+bcca=1
tìm min của bt \(P=\frac{a^2\left(1-2b\right)}{b}+\frac{b^2\left(1-2c\right)}{c}+\frac{c^2\left(1-2a\right)}{a}\)
cho a;b;c là các số thực dương thỏa mãn abc=1.Tìm Min của \(P=\frac{a^2}{\left(a+1\right)\left(b+1\right)bc}+\frac{b^2}{\left(b+1\right)\left(c+1\right)ca}+\frac{c^2-a^2b-ab-a-1}{\left(c+1\right)\left(a+1\right)ab}\)
Cho a, b,c > 0 thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=16\) và \(a\ge c\). Tìm min của
\(P=\frac{1}{\left(a+1\right)^2}+\frac{1}{\left(b+1\right)^2}+\frac{1}{\left(c+1\right)^2}\)
Bài 1: Cho a,b,c thỏa mãn a+b+c=3
Tìm GTNN \(P=\frac{a^3}{b\left(2c+a\right)}+\frac{b^3}{c\left(2a+b\right)}+\frac{c^3}{a\left(2b+c\right)}\)
Bài 2: Cho a,b>0 thỏa mãn a+b=2
Tìm GTNN \(Q=2\left(a^2+b^2\right)-6\left(\frac{a}{b}+\frac{b}{a}\right)+9\left(\frac{1}{a^2}+\frac{1}{b^2}\right)\)
Cho các số a,b,c thỏa mãn 0<a,b,c<1/2 và 2a+3b+4c=3
Tìm min P=\(\frac{2}{a\left(3b+4c-2\right)}+\frac{9}{b\left(4a+8c-3\right)}+\frac{8}{c\left(2a+3b-1\right)}\)
cho a;b;c là các số thực dương thỏa mãn abc=1
Tìm Min của P=\(\frac{a^2}{\left(ab+2\right)\left(2ab+1\right)}+\frac{b^2}{\left(bc+2\right)\left(2bc+1\right)}+\frac{c^2}{\left(ac+2\right)\left(2ac+1\right)}\)
cho \(a,b,c>0\) thỏa mãn \(ab+bc+ca=3;a\ge c\) TÌm Min
\(P=\frac{1}{\left(a+1\right)^2}+\frac{2}{\left(b+1\right)^2}+\frac{3}{\left(c+1\right)^2}\)