Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Cho \(a;b;c>0\) đôi một.

\(\dfrac{2a+b}{a+b}+\dfrac{2b+c}{b+c}+\dfrac{2c+d}{c+d}+\dfrac{2d+a}{d+a}=6\)

Chứng minh: \(abcd\) là số chính phương

Trần Quốc Lộc
4 tháng 5 2018 lúc 15:40

\(\text{Ta có : }\dfrac{2a+b}{a+b}+\dfrac{2b+c}{b+c}+\dfrac{2c+d}{c+d}+\dfrac{2d+a}{d+a}=6\\ \Rightarrow\left[\left(\dfrac{2a+b}{a+b}-1\right)+\left(\dfrac{2b+c}{b+c}-1\right)-1\right]+\left[\left(\dfrac{2c+d}{c+d}-1\right)+\left(\dfrac{2d+a}{d+a}-1\right)-1\right]=0\\ \Rightarrow\left(\dfrac{a}{a+b}+\dfrac{b}{b+c}-1\right)+\left(\dfrac{c}{c+d}+\dfrac{d}{d+a}-1\right)=0\\ \Rightarrow\left(\dfrac{a\left(b+c\right)}{\left(a+b\right)\left(b+c\right)}+\dfrac{b\left(a+b\right)}{\left(a+b\right)\left(b+c\right)}-\dfrac{\left(a+b\right)\left(b+c\right)}{\left(a+b\right)\left(b+c\right)}\right)+\left(\dfrac{c\left(d+a\right)}{\left(c+d\right)\left(d+a\right)}+\dfrac{d\left(c+d\right)}{\left(c+d\right)\left(d+a\right)}-\dfrac{\left(c+d\right)\left(d+a\right)}{\left(c+d\right)\left(d+a\right)}\right)=0\\ \Rightarrow\dfrac{ab+ac+ab+b^2-ab-b^2-ac-bc}{\left(a+b\right)\left(b+c\right)}+\dfrac{cd+ac+cd+d^2-cd-d^2-ac-ad}{\left(c+d\right)\left(d+a\right)}=0\\ \Rightarrow\dfrac{ab-bc}{\left(a+b\right)\left(b+c\right)}+\dfrac{cd-ad}{\left(c+d\right)\left(d+a\right)}=0\)\(\Rightarrow\dfrac{ab-bc}{\left(a+b\right)\left(b+c\right)}=\dfrac{ad-cd}{\left(c+d\right)\left(d+a\right)}\\ \Rightarrow\dfrac{b\left(a-c\right)}{\left(a+b\right)\left(b+c\right)}=\dfrac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}\\ \Rightarrow\dfrac{b}{\left(a+b\right)\left(b+c\right)}=\dfrac{d}{\left(c+d\right)\left(d+a\right)}\left(Vìa;b;c;d>0\right)\\ \Rightarrow b\left(c+d\right)\left(d+a\right)=d\left(a+b\right)\left(b+c\right)\\ \Rightarrow\left(bc+bd\right)\left(d+a\right)=\left(ad+bd\right)\left(b+c\right)\)

\(\Rightarrow bcd+bd^2+abc+abd=abd+b^2d+acd+bcd\\ \Rightarrow bd^2-b^2d=acd-abc\\ \Rightarrow bd\left(d-b\right)=ac\left(d-b\right)\\ \Rightarrow bd=ac\left(Vìd-b\ne0\right)\\ \Rightarrow abcd=ac\cdot bd=ac\cdot ac=\left(ac\right)^2\)

Vậy \(abcd\) là số chính phương


Các câu hỏi tương tự
Big City Boy
Xem chi tiết
Wang Soo Yi
Xem chi tiết
Bướm Đêm Sát Thủ
Xem chi tiết
Thánh cao su
Xem chi tiết
Một hai ba
Xem chi tiết
Nhã Doanh
Xem chi tiết
Nguyễn Thị Thu Hằng
Xem chi tiết
Trần Ích Bách
Xem chi tiết
Vũ Phương Thảo
Xem chi tiết