Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phương Nguyễn Ngọc Mai

Cho a,b,c>0 Cmr: Nếu \(\sqrt{1+b}+\sqrt{1+c}=2\sqrt{1+a}\)thì \(b+c\ge2a\)

Thắng Nguyễn
18 tháng 6 2017 lúc 11:28

Chứng minh điều ngược lại đúng tức là. Cho a,b,c>0 thỏa \(b+c=2a\) thì \(\sqrt{b+1}+\sqrt{c+1}\le2\sqrt{a+1}\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT=\left(\sqrt{b+1}+\sqrt{c+1}\right)^2\)

\(\le​\left(1+1\right)\left(b+1+c+1\right)\)

\(=2\left(b+c+2\right)\le4\left(a+1\right)=VP\)

\(\Rightarrow\left(\sqrt{b+1}+\sqrt{1+c}\right)^2\le4\left(a+1\right)\)

\(\Rightarrow\sqrt{b+1}+\sqrt{1+c}\le\sqrt{4\left(a+1\right)}=2\sqrt{a+1}\)

BĐT cuối đúng hay ta có ĐPCM

Thắng Nguyễn
18 tháng 6 2017 lúc 11:35

Chứng minh điều ngược lại đúng, tức là :Cho a,b,c>0 thỏa \(b+c=2a\) thì \(\sqrt{b+1}+\sqrt{c+1}\le2\sqrt{a+1}\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT^2=\left(\sqrt{b+1}+\sqrt{c+1}\right)^2\)

\(\le\left(1+1\right)\left(b+1+c+1\right)\)

\(=2\left(b+c+2\right)=2\left(2a+2\right)\)

\(=4\left(a+1\right)=2^2\sqrt{\left(a+1\right)^2}=VP^2\)

Vì \(VT^2\le VP^2\Rightarrow VT\le VP\)

BĐT kia đúng nên ta có ĐPCM

Thắng Nguyễn
18 tháng 6 2017 lúc 11:35

sr bn mk tưởng chưa gửi dc nên gửi lại, Sorry


Các câu hỏi tương tự
Wan
Xem chi tiết
Công chúa Sakura
Xem chi tiết
Le Minh Hieu
Xem chi tiết
senorita
Xem chi tiết
Aiko Kiyoshi
Xem chi tiết
Hắc Thiên
Xem chi tiết
Aiko Kiyoshi
Xem chi tiết
Hoàng Trung Đức
Xem chi tiết
Đức Anh Gamer
Xem chi tiết