Cho (a+b+c)^2 = 3(ab+bc+ca). CMR: a=b=c
Cho a^3+b^3+c^3 = 3abc. CMR: a=b=c và a+b+c=0
Cho a+b+c=0. CMR: a^3+b^3+c^3 = 3abc
Cho a/c=a-b/b-c (a,c khác 0. a-b khác 0; b-c khác 0).CMR 1/a + 1/a-b=1/b-c -1/c
cho a, b ,c thỏa mãn a/(b-c)+b/(c-a)+c/(a-b)=0
cmr: a/(b-c)^2+b/(c-a)^2+c/(a-b)^2=0
Cho a+b+c=0 . Cmr : A = B biết : A = a(a+b)(a+c) và B = c(a+c)(b+c) .
Cho a/(b+c) + b/(c+a) +c/(a+b)=1 cmr a^2/(b+c) + b^2/(c+a) +c^2/(a+b)=0
cho a,b,c>0. CMR a/c+b+b/a+c+c/a+b>=a/1+a^2+b/1+b^3+c/1+c^2
Cho a,b,c khác 0 và 1/a + 1/b + 1/c = 1/a+b+c. CMR : (a+b)(b+c)(a+c)=0
Cho a,b,c khác 0 và a+b+c=0. CMR 1/b²+c²-a² +1/c²+a²-b² +1/a²+b²-c²
Cho a khác +-b và a(a+b)(a+c)=b(b+c)(b+c) . CMR : a+b+c=0