Cho a,b,c>0. CM: \(\frac{a^4+b^4+c^4}{ab+bc+ca}+\frac{3abc}{a+b+c}\ge\frac{2}{3}.\left(a^2+b^2+c^2\right)\)
cho a+b+c=0 . CMR a, ( ab+bc+ca)^2 = a^2b^2+b^2c^2+c^2a^2 b, a^4+b^4+c^4=2(ab+bc+ca)^2
cho a+ b+c=0 cm a4+b4+c4=
a) 2(ab+bc+ca)2
b) (a2+b2+c2)2/2
Cho a+b+c=0 CMR
1. a^4 + b^4 + c^4 = 2( a^2b^2 + b^2c^2 + c^2a^2 )
2. a^4 + b^4 + c^4 = 2( ab + bc + ca )^2
3. a^4 + b^4 + c^4 = (a^2 + b^2 + c^2)^2 /2
Cho a+b+c=0 CMR
a) (ab+bc+ca)2=a2b2+b2c2+c2a2
b) a4+b4+c4=2(ab+bc+ca)2
Cho a + b + c = 0. Chứng minh a^4 + b^4 + c^4 bằng mỗi biểu thức:
a) 2(a^2b^2 + b^2c^2 + c^2a^2)
b) 2( ab + bc + ca)^2
c) (a^2 + b^2 + c^2)^2 / 2
Bài 3: Cho a + b + c = 0. Chứng minh a^4 + b^4 + c^4 bằng mỗi biểu thức:
a) 2(a^2b^2 + b^2c^2 + c^2a^2)
b) 2( ab + bc + ca)^2
c) (a^2 + b^2 + c^2)^2 / 2
Cho a+b+c=0
CM: a^4+b^4+c^4=2(ab+bc+ca)^2
Cho a + b + c = 0. Chứng minh rằng:
a, ( ab + bc + ca ) 2 = a2b2 + b2c2 + c2a2
b, a ^ 4 + b ^ 4 + c ^ 4 = 2 x ( ab + bc + ca )2