Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Neet

Cho a,b,c>0. Chứng minh

\(\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc+\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3\)

Đào Ngọc Hoa
5 tháng 8 2017 lúc 13:18

Ta có: \(a+b+c\ge3\sqrt[3]{abc}\)

\(ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\)

\(\Rightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)(1)

Ta có: \(\left(a-b\right)^3+\left(b-c\right)^2+\left(c-a\right)^3\)

\(=\left(a-b\right)^3+3\left(a-b\right)^2\left(b-c\right)+3\left(a-b\right)\left(b-c\right)^2+\left(b-c\right)^3-\left(a-c\right)^3-3\left(a-b\right)^2\left(b-c\right)-3\left(a-b\right)\left(b-c\right)^2\)

\(=\left(a-b+b-c\right)^3-\left(a-c\right)^3-3\left(a-b\right)\left(b-c\right)\left(a-b+b-c\right)\)

\(=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

Ta có: \(a-b+b-c+c-a\ge3\sqrt[3]{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(\Leftrightarrow0\ge\sqrt[3]{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(\Leftrightarrow0\ge3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

\(\Leftrightarrow9abc\ge9abc+3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)(2)

Từ (1), (2) ta có: \(\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc+3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc+\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3\)

Dấu "=" xảy ra khi \(a=b=c\)


Các câu hỏi tương tự
dam thu a
Xem chi tiết
Hoàng
Xem chi tiết
Nguyen
Xem chi tiết
Quỳnh Nguyễn Thị Ngọc
Xem chi tiết
dbrby
Xem chi tiết
trần trang
Xem chi tiết
Nguyen
Xem chi tiết
kookie kookie
Xem chi tiết
Phạm Dương Ngọc Nhi
Xem chi tiết