\(\frac{a^2}{b+c}\)+\(\frac{b+c}{4}\)=\(\frac{\left(2a\right)^2+\left(b+c\right)^2}{4\left(b+c\right)}\)>=\(\frac{4a\left(b+c\right)}{4\left(b+c\right)}\)=a (b,c>0)
chứng minh tương tự ta có:\(\frac{b^2}{a+c}\)+\(\frac{c+a}{4}\)>=b
tương tự:\(\frac{c^2}{a+b}\)+\(\frac{a+b}{4}\)>=c
Cộng từng vế bất đẳng thức trên là được nha.Có gì ko hiểu thì hỏi mình