BL: a + b + c > 0 => a + b >= -c
Ta có: a + b .>= -c
=> ( a + b )3 >= (-c)3
=> a3 + b3 + 3ab ( ab) >= (-c)3
=> a3 + b3 + 3ab ( -c) >= (-c)3
=> a3 + b3 + c3 >= 3abc ( ĐPCM)
\(a^3+b^3+c^3\ge3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc\ge0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\ge0\)
\(\Leftrightarrow\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2bc-2ac\right)\ge0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\) (Luôn đúng \(\forall a;b;c>0\) )
Vậy \(a^3+b^3+c^3\ge3abc\)