cho a,b,c>0 và a+b+c=6
chứng minh rằng
\(\frac{a}{\sqrt{b^3+1}}+\frac{b}{\sqrt{c^3+1}}+\frac{c}{\sqrt{a^3+1}}\ge2\)
cho a,b,c > 0 thỏa mãn \(a+b+c=6\)
chứng minh rằng \(\frac{a}{\sqrt{b^3+1}}+\frac{b}{\sqrt{c^3+1}}+\frac{c}{\sqrt{a^3+1}}\ge2\)
1.Chứng minh \(\sqrt{x^2+xy+y^2}+\sqrt{x^2+xz+z^2}\ge\sqrt{y^2+yz+z^2}\)
2. Cho a,b,c>0. Chứng minh \(\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)\left(\frac{1}{\sqrt[3]{a}}+\frac{1}{\sqrt[3]{b}}+\frac{1}{\sqrt[3]{c}}\right)-\frac{a+b+c}{\sqrt[3]{abc}}\le6\)
3. Cho a,b>0 , n là số nguyên dương. Chứng minh \(\frac{1}{\sqrt[n]{a}}+\frac{1}{\sqrt[n]{b}}\ge2\sqrt[n]{\frac{2}{a+b}}\)
4. Cho a,b,c >0. Chứng minh \(\frac{1}{a^2+bc}+\frac{1}{b^2+ca}+\frac{1}{c^2+ba}\le\frac{a+b+c}{2abc}\)
Cho a, b, c > 0 và a + b + c = 6. CMR :
\(\frac{a}{\sqrt{b^3+1}}+\frac{b}{\sqrt{c^3+1}}+\frac{c}{\sqrt{a^3+1}}\ge2\)
Cho a, b, c > 0 và a + b + c = 6. CMR :
\(\frac{a}{\sqrt{b^3+1}}+\frac{b}{\sqrt{c^3+1}}+\frac{c}{\sqrt{a^3+1}}\ge2\)
cho a+b+c=6 cmr\(\frac{a}{\sqrt{b^3+1}}+\frac{b}{\sqrt{c^3+1}}+\frac{c}{\sqrt{a^3+1}}\ge2\)
CHo \(a^3+b^3+c^3=1.\)Chứng minh: \(\frac{a^2}{\sqrt{1-a^2}}+\frac{b^2}{\sqrt{1-b^2}}+\frac{c^2}{\sqrt{1-c^2}}\ge2\)
cho 3 so duong a,b,c tm a+b+c=6
cmr\(\frac{a}{\sqrt{b^3+1}}+\frac{b}{\sqrt{c^3+1}}+\frac{c}{\sqrt{a^3+1}}\ge2\)
Bài 1: Cho a,b>0. Chứng minh \(\sqrt[3]{\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)}< \sqrt[3]{\frac{a}{b}}+\sqrt[3]{\frac{b}{a}}\)
Bài 2: Cho a,b>0. Chứng minh \(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}\ge\frac{2\sqrt{2}}{\sqrt{a+b}}\)
Bài 3: Cho a,b,c>0. Chứng minh \(\frac{5b^3-a^3}{ab+3b^2}+\frac{5c^3-b^3}{bc+3c^2}+\frac{5a^3-c^3}{ca+3a^2}\le a+b+c\)