Ta có: \(VT=a^2+b^2+\frac{ab+1}{a^2}=a^2+\frac{a^2b^2+ab+1}{a^2}\ge a^2+\frac{\frac{3}{4}}{a^2}\ge2\sqrt{\frac{3}{4}}=\sqrt{3}\)
Dấu = xảy ra khi \(\hept{\begin{cases}a^4=\frac{3}{4}\\ab=-\frac{1}{2}\end{cases}}\)
Ta có: \(VT=a^2+b^2+\frac{ab+1}{a^2}=a^2+\frac{a^2b^2+ab+1}{a^2}\ge a^2+\frac{\frac{3}{4}}{a^2}\ge2\sqrt{\frac{3}{4}}=\sqrt{3}\)
Dấu = xảy ra khi \(\hept{\begin{cases}a^4=\frac{3}{4}\\ab=-\frac{1}{2}\end{cases}}\)
1) Cho a, b, c>0 và a+b+c=3. Chứng minh rằng: \(\frac{a}{b^3+ab}+\frac{b}{c^3+bc}+\frac{c}{a^3+ac}\ge\frac{3}{2}\)
2) Cho a, b, c >0 thỏa mãn: ab+ac+bc+abc=4. Chứng minh rằng: \(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\le3\)
Bài 1: Cho a,b>0. Chứng minh \(\sqrt[3]{\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)}< \sqrt[3]{\frac{a}{b}}+\sqrt[3]{\frac{b}{a}}\)
Bài 2: Cho a,b>0. Chứng minh \(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}\ge\frac{2\sqrt{2}}{\sqrt{a+b}}\)
Bài 3: Cho a,b,c>0. Chứng minh \(\frac{5b^3-a^3}{ab+3b^2}+\frac{5c^3-b^3}{bc+3c^2}+\frac{5a^3-c^3}{ca+3a^2}\le a+b+c\)
1.Chứng minh \(\sqrt{x^2+xy+y^2}+\sqrt{x^2+xz+z^2}\ge\sqrt{y^2+yz+z^2}\)
2. Cho a,b,c>0. Chứng minh \(\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)\left(\frac{1}{\sqrt[3]{a}}+\frac{1}{\sqrt[3]{b}}+\frac{1}{\sqrt[3]{c}}\right)-\frac{a+b+c}{\sqrt[3]{abc}}\le6\)
3. Cho a,b>0 , n là số nguyên dương. Chứng minh \(\frac{1}{\sqrt[n]{a}}+\frac{1}{\sqrt[n]{b}}\ge2\sqrt[n]{\frac{2}{a+b}}\)
4. Cho a,b,c >0. Chứng minh \(\frac{1}{a^2+bc}+\frac{1}{b^2+ca}+\frac{1}{c^2+ba}\le\frac{a+b+c}{2abc}\)
cho a,b,c> 0. chứng minh rằng
\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\le\frac{3}{2}\sqrt{\frac{a^2+b^2+c^2}{ab+bc+ca}+1}\)
Cho a,b,c là những số hữu tỉ khác 0 và a=b+c
Chứng minh rằng \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\)là một số hữu tỉ
Bài 1: Chứng minh rằng (x, y, z > 0)
Bài 2: Cho a + b + c > 0; abc > 0; ab + bc + ca > 0. Chứng minh rằng a > 0; b > 0; c > 0.
Bài 3: Chứng minh rằng (a, b, c > 0)
Bài 4: Chứng minh rằng (a + b) (b + c) (c + a) 8abc (a, b, c 0)
Bài 5: Chứng minh rằng (a, b, c, d 0)
Bài 6: Cho x, y, z > 0 thỏa mãn .
Chứng minh .
Bài 7: Cho a, b, c là độ dài 3 cạnh của 1 tam giác. Chứng minh rằng (a+b-c) (b+c-a) (c+a-b) ab.
Bài 8: Cho x, y, z > 0; x+y+z = 1. Chứng minh rằng .
Bài 9: Cho 2 số có tổng không đổi. Chứng minh rằng tích của chúng lớn nhất khi và chỉ khi 2 số đó bằng nhau.
Bài 10: Cho a, b, c > 0. Chứng minh rằng
Bài 1: Cho a>0;b>0;c>0 thỏa mãn abc=1. Chứng minh rằng:
a)\(a^3+b^3+c^3\ge a+b+c\)
b) \(a^3+b^3+c^3\ge a^2+b^2+c^2\)
Bài 2: Với mọi a,b,c là các số thực. Chứng minh rằng:
\(\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\ge a +b+c\)
Bài 3: Cho x,y,z là các số thực dương thỏa mãn \(x+y+z\le1\)
Chứng minh rằng: \(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{82}\)
cho a,b,c là 3 số khác 0. chứng minh rằng:
\(\frac{a}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)
Cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2=3\) CHứng minh rằng \(\frac{a}{\sqrt{a^2+b+c}}+\frac{b}{\sqrt{b^2+a+c}}+\frac{c}{\sqrt{c^2+a+b}}\le\sqrt{3}\)