a)Xét \(\Delta ABC\) và \(\Delta AMC\) có:
AC chung
\(\widehat{BAC}=\widehat{MAC}=90^o\)
AB=AM
=> \(\Delta ABC\) = \(\Delta AMC\) (c-g-c)
b)Xét \(\Delta ABH\) vuong tại H và \(\Delta ACK\) vuông tại K có:
\(\widehat{HBA}=\widehat{KCA}\) ( \(\Delta ABC\) = \(\Delta AMC\) )
AB=AM
=> \(\Delta ABH\)=\(\Delta ACK\) (chgn)
=> BH=MK
Có: BH+HC=BC
MK+KC=MC
mà BH=MK ; BC=MC( \(\Delta ABC\) = \(\Delta AMC\) )
=> HC=KC=> \(\Delta HCK\) cân tại C
=> \(\widehat{CHK}=\dfrac{180^o-\widehat{C}}{2}\) (1)
Có: BC=MC => \(\Delta CBM\) cân tại C
=> \(\widehat{CBM}=\dfrac{180^o-\widehat{C}}{2}\) (2)
Từ (1)(2)=> \(\widehat{CBM}=\widehat{CHK}\)
mà \(\widehat{CBM}và\widehat{CHK}\) ở vị trí đồng vị
=> HK//BM