a) Vì MK là đường trung trực của AC nên M nằm trên đường trung trực của AC
hay MA=MC
Xét ΔMAC có MA=MC(cmt)
nên ΔMAC cân tại M(Định nghĩa tam giác cân)
a) Vì MK là đường trung trực của AC nên M nằm trên đường trung trực của AC
hay MA=MC
Xét ΔMAC có MA=MC(cmt)
nên ΔMAC cân tại M(Định nghĩa tam giác cân)
Cho tam giác ABC vuông tại A, đường cao AH. Gọi M, N theo thứ tự
là chân các đường vuông góc kẻ từ H đến AC, AB. Đường thẳng MN cắt AH tại I và cắt
CB tại E. Gọi O là trung điểm của BC. Kẻ HD vuông góc với AE (D ∈ AE). Chứng minh
rằng:
a) I là trực tâm của tam giác AOE.
b) BDC = 90◦
Cho ABC nhọn, các đường cao BD, CE cắt nhau tại H. Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau tại K. a, Chứng minh AH BC. b, Chứng minh tứ giác BHCK là hình bình hành. c, Gọi I là trung điểm của AK, M là trung điểm của BC. Chứng minh ba điểm H, M, K thẳng hàng
Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E.
a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC
b ) Chứng minh , BF.FC = DF.EF
c ) Tính BC biết DE = 5cm , EF = 4cm
. d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC
.Bài 26 : Cho tam giác ABC vuông tại A , đường cao AH . Gọi E , F lần lượt là chân đường vuông góc kẻ tử H đến AB , AC
a ) Chứng minh : AH = EF
b ) Chứng minh : AB^2 = BH.BC
c ) Chứng minh :tam giác HEF đồng dạng vớ itam giác ABC
d ) Kẻ tìa Bx vuông góc BC , Bx cắt đường thẳng AC tại K. Gọi O là giao điểm của EF và AH . Chứng minh : CO đi qua trung điểm của KB .
Bài 27 : Cho tam giác ABC có góc A = 90 độ ; AB = 15cm , AC = 20cm , đường phân giác BD cắt đường cao AH tại K.
a ) Tính BC , AD
b ) Chứng minh tam giác AHB đồng dạng với tam giác CAB ,
c ) Chứng minh : BH.BD = BK.BA , d ) Gọi M là trung điểm của KD . Kẻ tia Bx song song với AM . Tia Bx cắt tia AH tại J , Chứng minh : HK.AJ = AK.HJ .
cho tam giác abc vuông tại a(ab<ac), kẻ đường cao ah. gọi d,e lần lượt là hình chiêu của h trên ab,ac. đường thẳng qua a vuông góc với de cắt bc tại 0
a) chứng minh o là trung điểm của bc
b) kẻ đường thẳng vuông góc với ao tại a cắt bc tại k. chứng minh ab là phân giác góc kah
Bài 3. Cho tam giác ABC, các đường cao AD, BE, CF, trực tâm H. Gọi O là giao điểm ba đường trung trực. Gọi I là trung điểm AH. Qua 1 kẻ đường thẳng vuông góc với OI, cắt AB,AC tại K, L. a) Gọi M là trung điểm của BC, chứng minh AH = 2OM b) Chung minh MH vuông góc KL . c) Chứng minh AHCM đồng dạng với AKAI, từ đó suy ra IK = IL Giúp mình càng nhanh càng tốt ạ mình cần trong 10 p nữa ạ
Bài 3. Cho tam giác ABC, các đường cao AD, BE, CF, trực tâm H. Gọi O là giao điểm ba đường trung trực. Gọi I là trung điểm AH. Qua 1 kẻ đường thẳng vuông góc với OI, cắt AB,AC tại K, L. a) Gọi M là trung điểm của BC, chứng minh AH = 2OM b) Chung minh MH vuông góc KL . c) Chứng minh AHCM đồng dạng với AKAI, từ đó suy ra IK = IL
Cho tam giác ABC vuông tại A, có đường cao AH. Phân giác góc ABC cắt AC tại D, cắt AH tại E. Biết AB = 9, BC = 15. I là trung điểm ED. Chứng minh góc BIH = góc ACB
Cho tam giác ABC nhọn có AB > AC. Các đường cao AD,BE, CF cắt tại H.
a) chứng minh rằng ∆AFH~∆ADB
b) ∆ AFE~∆ABC và EH là tia phân giác của góc FED
c) gọi I là trung điểm của BC qua H kẻ đường thẳng vuông góc với HI đường thẳng này cắt AB tại M, cắt AC tại N . Chứng minh ∆ IMN cân