Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Minh Thư

Cho a,b,c thực dương t.m: a+b+c=2

CMR: P = ab/căn ( ab+2c) + bc/căn( bc+2a) +ca/căn ( ca+2b)<=1

Kiệt Nguyễn
5 tháng 12 2019 lúc 21:23

Ta có: a + b + c = 2 nên \(2c+ab=c\left(a+b+c\right)+ab=ac+bc+c^2+ab\)

\(=\left(ca+c^2\right)+\left(bc+ab\right)=c\left(a+c\right)+b\left(a+c\right)\)\(=\left(b+c\right)\left(a+c\right)\)

Áp dụng BĐT Cô - si cho 2 số không âm:

\(\frac{1}{b+c}+\frac{1}{a+c}\ge2\sqrt{\frac{1}{\left(b+c\right)\left(a+c\right)}}\)(Vì a,b,c thực dương)

\(\Rightarrow\sqrt{\frac{1}{\left(b+c\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{1}{b+c}+\frac{1}{a+c}\right)\)

\(\Rightarrow\frac{1}{\sqrt{2c+ab}}\le\frac{1}{2}\left(\frac{1}{b+c}+\frac{1}{a+c}\right)\)(cmt)

\(\Rightarrow\frac{ab}{\sqrt{ab+2c}}\le\frac{1}{2}\left(\frac{ab}{b+c}+\frac{ab}{a+c}\right)\)(nhân 2 vế cho ab thực dương)    (1)

(Dấu "="\(\Leftrightarrow\frac{1}{b+c}=\frac{1}{c+a}\Leftrightarrow b+c=c+a\Leftrightarrow a=b\))

Tương tự ta có: \(\frac{bc}{\sqrt{bc+2a}}\le\frac{1}{2}\left(\frac{bc}{b+a}+\frac{bc}{a+c}\right)\)(Dấu "="\(\Leftrightarrow b=c\))  (2)

\(\frac{ca}{\sqrt{ca+2b}}\le\frac{1}{2}\left(\frac{ca}{c+b}+\frac{ca}{b+a}\right)\)(Dấu "="\(\Leftrightarrow a=c\))  (3)

Cộng các BĐT (1) , (2) , (3), ta được:

\(P\le\frac{1}{2}\left(\frac{ab}{c+a}+\frac{ab}{c+b}+\frac{bc}{b+a}+\frac{cb}{c+a}+\frac{ac}{b+a}+\frac{ac}{c+b}\right)\)

\(\Rightarrow P\le\frac{1}{2}\left(\frac{b\left(c+a\right)}{c+a}+\frac{a\left(c+b\right)}{c+b}+\frac{c\left(b+a\right)}{b+a}\right)\)

\(\le\frac{1}{2}\left(a+b+c\right)=1\)

Vậy \(P=\frac{ab}{\sqrt{ab+2c}}\)\(+\frac{bc}{\sqrt{bc+2a}}\)\(+\frac{ca}{\sqrt{ca+2b}}\le1\)

(Dấu "="\(\Leftrightarrow a=b=c=\frac{2}{3}\))

Khách vãng lai đã xóa
coolkid
5 tháng 12 2019 lúc 21:22

Ta có:

\(\frac{ab}{\sqrt{ab+2c}}=\frac{ab}{\sqrt{ab+\left(a+b+c\right)c}}=\frac{ab}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le\frac{ab}{c+a}+\frac{ab}{c+b}\)

Tương tự:

\(\frac{bc}{\sqrt{bc+2a}}\le\frac{bc}{a+b}+\frac{bc}{a+c}\)

\(\frac{ca}{\sqrt{ca+2b}}\le\frac{ca}{b+c}+\frac{ca}{b+a}\)

Khi đó:

\(P\le\frac{ab}{a+c}+\frac{ab}{c+b}+\frac{bc}{a+b}+\frac{bc}{a+c}+\frac{ca}{b+c}+\frac{ca}{b+a}\)

\(=\frac{b\left(a+c\right)}{a+c}+\frac{a\left(b+c\right)}{b+c}+\frac{c\left(a+b\right)}{b+a}\)

\(=a+b+c=2\)

Dấu "=" xảy ra tại \(a=b=c=\frac{2}{3}\)

Khách vãng lai đã xóa
coolkid
5 tháng 12 2019 lúc 21:24

Á á lộn rồi:(

\(\frac{ab}{\sqrt{ab+2c}}\le\frac{1}{2}\left(\frac{ab}{c+a}+\frac{ab}{c+b}\right)\) nha !!

\(\frac{bc}{\sqrt{bc+2a}}\le\frac{1}{2}\left(\frac{bc}{a+b}+\frac{bc}{a+c}\right)\)

\(\frac{ca}{\sqrt{ca+2b}}\le\frac{1}{2}\left(\frac{ca}{b+c}+\frac{ca}{b+a}\right)\)

Khi đó:

cộng lại rồi làm tương tự

Khách vãng lai đã xóa

Các câu hỏi tương tự
Lê Châu Linh
Xem chi tiết
vũ văn tùng
Xem chi tiết
vũ văn tùng
Xem chi tiết
đào trọng nam
Xem chi tiết
Nguyễn Hồng Hà
Xem chi tiết
Lyzimi
Xem chi tiết
Tạ Duy Phương
Xem chi tiết
phong
Xem chi tiết
Nhok_baobinh
Xem chi tiết