Áp dụng BĐT BCS : \(\frac{3M}{4}=\left(1^2+1^2+1^2\right).\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=\frac{9}{4}\Rightarrow M\ge3\)
Đẳng thức xảy ra khi a = b = c = 1/2
Vậy ..................................
Áp dụng BĐT BCS : \(\frac{3M}{4}=\left(1^2+1^2+1^2\right).\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=\frac{9}{4}\Rightarrow M\ge3\)
Đẳng thức xảy ra khi a = b = c = 1/2
Vậy ..................................
Cho a,b,c thỏa mãn a+b+c=3/2. Tìm GTNN của M=4(a^2+b^2+c^2)
Cho a,b,c thỏa mãn a+b+c=3/2. Tìm GTNN của M=4(a^2+b^2+c^2)
a,b,c thỏa mãn a+b+c=3/4 tìm GTNN : M=4(a2+b2+c2)
1/Cho a,b,c≥0 và \(a^2+b^2+c^2\le abc\). Tìm GTLN của
M=\(\frac{a}{a^2+bc}+\frac{b}{b^2+ca}+\frac{c}{c^2+ba}\)
2/Cho a,b,c>0 thỏa mãn 13a+5b+12c=9. Tìm GTLN của
N=\(\frac{ab}{2a+b}+\frac{3bc}{2b+c}+\frac{6ca}{2c+a}\)
3/Cho a,b,c>0 thỏa mãn a+b+c=3. Tìm GTNN của
P=\(\frac{1}{2+a^2b}+\frac{1}{2+b^2c}+\frac{1}{2+c^2a}\)
4/Cho các số thực a,b,c thỏa mãn ab+7bc+ca=188.
Tìm GTNN của P=\(5a^2+11b^2+5c^2\)
Ai giải được câu nào giải hộ mình vs ạ!!!
Cho a,b,c là các số dương thỏa mãn \(a^2+b^2+c^2=3\). Tìm GTNN của:
\(M=\frac{a^5}{b^3+c^2}+\frac{b^5}{c^3+a^2}+\frac{c^5}{a^3+b^2}+a^4+b^4+c^4\)
Cho a,b,c là các số thực dương thỏa mãn \(a^2+b^2+c^2=3\). Tìm GTNN của:
\(M=\frac{a^5}{b^3+c^2}+\frac{b^5}{c^3+a^2}+\frac{c^5}{a^3+b^2}+a^4+b^4+c^4\)
Bài toán:
a) Cho các số thực dương a,b,c thỏa mãn a+b+2c=6. Tìm GTNN của A= a^2+ b^2+ c^2 + 1/a^2+b^2+c^2
b) Cho các số thực dương a,b,c thỏa mãn Biết rằng 1 bé hơn hoặc bằng a;b;c bé hơn hoặc bằng 2 và a+b+c=5
tìm GTLN, GTNN của B=a^3+b^3+c^3
Giúp mình giải bài này với!!!!!!!!!!!!!!!!
Cho 3 số a, b, c thỏa mãn a^2 + b^2 + c^2 ≤ 18. Tìm GTNN của A = 3ab + bc + ac
Cho 3 số dương a,b,c thỏa mãn \(a^2+b^2+c^2=3\)
Tìm GTNN của M=\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+2\left(a+b+c\right)\)