Cho a,b,c thỏa mãn (3a+3b+3c)3 = 24 + (3a+b-c)3 + (3b+c-a)3 + (3c+a-b)3 chứng minh (a+2b)(b+2c)(c+2a)=1
với các số a,b,c là các số thực thỏa mãn (3a+3b+3c)3 = 24 + (3a+b-c)3 + (3b+c-a)3 + (3c+a-b)3
CMR (a+2b) (b+2c) (c+2a) = 1
Cho a,b,c > 0 thỏa mãn a+b+c = 3
CMR: 3(ab+bc+ca) >= abc (a^2 + b^2 + c^2 + 6)
với các số a,b,c là các số thực thỏa mãn (3a+3b+3c)3 = 24 + (3a+b-c)3 + (3b+c-a)3 + (3c+a-b)3
CMR (a+2b) (b+2c) (c+2a) = 1
với các số a,b,c là các số thực thỏa mãn (3a+3b+3c)3 = 24 + (3a+b-c)3 + (3b+c-a)3 + (3c+a-b)3
CMR (a+2b) (b+2c) (c+2a) = 1
a,b,c là các số thực không âm thỏa mãn a+b+c=2. Tìm max và min của \(P=\sqrt{a+b^3c^3}+\sqrt{b+c^3a^3}+\sqrt{c+a^3b^3}\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c=3. Chứng minh rằng :
\(\dfrac{5a^3-b^3}{ab+3a^2}+\dfrac{5b^3-c^3}{bc+3b^2}+\dfrac{5c^3-a^3}{ca+3c^2}\le3\)
Cho a,bc thỏa mãn \(a\ge b\ge c>0\)
Chứng minh : \(\frac{a^3b}{a^3+b^3}+\frac{b^3c}{b^3+c^3}+\frac{c^3a}{c^3+a^3}\ge\frac{ab^3}{a^3+b^3}+\frac{bc^3}{b^3+c^3}+\frac{ca^3}{c^3+a^3}\)