Đường cao AH của tam giác ABC cắt CM tại N. Chứng minh: N là trung điểm của AH.
Đường cao AH của tam giác ABC cắt CM tại N. Chứng minh: N là trung điểm của AH.
Đường cao AH của tam giác ABC cắt CM tại N. Chứng minh: N là trung điểm của AH.
Đường cao AH của tam giác ABC cắt CM tại N. Chứng minh: N là trung điểm của AH.
B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.
a) Chứng minh tứ giác AEHF là hình chữ nhật
b) Chứng minh tứ giác BEFC nội tiếp
c) Gọi I là trung điểm của B
C.Chứng minh AI vuông góc với EF
d) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEF
C.Tính diện tích hình tròn tâm K.
B2: Cho ABC nhọn, đường tròn (O) đường kính BC cắt AB, AC lần lượt tại E và D, CE cắt BD tại H
a) Chứng minh tứ giác ADHE nội tiếp
b) AH cắt BC tại F. chứng minh FA là tia phân giác của góc DFE
c) EF cắt đường tròn tại K ( K khác E). chứng minh DK// AF
d) Cho biết góc BCD = 450 , BC = 4 cm. Tính diện tích tam giác ABC
B 3: cho đường tròn ( O) và điểm A ở ngoài (O)sao cho OA = 3R. vẽ các tiếp tuyến AB, AC với đường tròn (O) ( B và C là hai tiếp tuyến )
a) Chứng minh tứ giác OBAC nội tiếp
b) Qua B kẻ đường thẳng song song với AC cắt ( O) tại D ( khác B). đường thẳng AD cắt ( O) tại E. chứng minh AB2= AE. AD
c) Chứng minh tia đối của tia EC là tia phân giác của góc BEA
d) Tính diện tích tam giác BDC theo R
B4: Cho tam giác ABC nhọn, AB >AC, nội tiếp (O,R), hai đường cao AH, CF cắt nhau tại H
a) Chứng minh tứ giác BDHF nội tiếp? Xác định tâm của đường tròn ngoại tiếp tứ giác đó
b) Tia BH cắt AC tại E. chứng minh HE.HB= HF.HC
c) Vẽ đường kính AK của (O). chứng minh AK vuông góc với EF
d) Trường hợp góc KBC= 450, BC = R. tính diện tích tam giác AHK theo R
B5: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Ba đương cao AE, BF, CK cắt nhau tại H. Tia AE, BF cắt đường tròn tâm O lần lượt tại I và J.
a) Chứng minh tứ giác AKHF nội tiếp đường tròn.
b) Chứng minh hai cung CI và CJ bằng nhau.
c) Chứng minh hai tam giác AFK và ABC đồng dạng với nhau
B6: Cho tam giác ABC nhọn nội tiếp đường tròn ( O; R ),các đường cao BE, CF .
a)Chứng minh tứ giác BFEC nội tiếp.
b)Chứng minh OA vuông góc với EF.
Cho tam giác ABC. Hai đường cao BE, CF cắt nhau tại H. Gọi M và O lần lượt là trung điểm của AH, BC. Chứng minh rằng
a, AFHE là tứ giác nội tiếp
b, OE là tiếp tuyến của đường tròn đường kính AH
c, OE cắt AH tại S. Chứng minh rằng SE2=SH.SA
Cho tam giác ABC có ba góc nhọn AB<AC 3 đường cao AD, BE, CF cắt nhau ở H
1) chứng minh tứ giác BFEC nội tiếp. Xác định tâm o của đường tròn ngoại tiếp tứ giác này
2) Gọi I là trung điểm của AH. Chứng minh IE là tiếp tuyến của đường tròn o
3) Vẽ CI cắt đường tròn o tại M khác C, EF cắt AD tại K. Chứng minh ba điểm B, K, M thẳng hàng
CHO TAM GIÁC ABC CÓ BA GÓC NHỌN (AB<AC) NỘI TIẾP DƯỜNG TRÒN TÂM O. VẼ HAI ĐƯỜNG CAO BN VÀ CM CẮT NHAU TẠI H
A/ CHỨNG MINH TỨ GIÁC AMHN VÀ TỨ GIÁC BMNC NỘI TIẾP DƯỜNG TRÒN
B/ TIẾP TUYẾN TẠI A CẮT BC TẠI I. CHỨNG MINH IA MŨ 2 =IB*IC
C/ DƯỜNG THẲNG MN CẮT DƯỜNG TRÒN TÂM O TẠI D VÀ E ( ĐIỂM M NẰM GIỮA HAI ĐIỂM D VÀ N ) CHỨNG MINH AD LÀ TIẾP TUYẾN CỦA ĐƯỜNG TRÒN NGOẠI TIẾPTAM GIÁC DBM
CHO TAM GIÁC ABC CÓ BA GÓC NHỌN (AB<AC) NỘI TIẾP DƯỜNG TRÒN TÂM O. VẼ HAI ĐƯỜNG CAO BN VÀ CM CẮT NHAU TẠI H
A/ CHỨNG MINH TỨ GIÁC AMHN VÀ TỨ GIÁC BMNC NỘI TIẾP DƯỜNG TRÒN
B/ TIẾP TUYẾN TẠI A CẮT BC TẠI I. CHỨNG MINH IA MŨ 2 =IB*IC
C/ DƯỜNG THẲNG MN CẮT DƯỜNG TRÒN TÂM O TẠI D VÀ E ( ĐIỂM M NẰM GIỮA HAI ĐIỂM D VÀ N ) CHỨNG MINH AD LÀ TIẾP TUYẾN CỦA ĐƯỜNG TRÒN NGOẠI TIẾPTAM GIÁC DBM
Cho tam giác ABC nội tiếp đường tròn ( O ; R ) , các tiếp tuyến tại B và C với đường tròn ( O ; R ) cắt nhau tại E, AE cắt ( O ; R ) tại D ( khác điểm A )
1. Chứng minh : tứ giác OBEC nội tiếp đương tròn
2. Từ E kẻ đường thẳng d song song với tiếp tuyến tại A của ( O ; R ) , d cắt các đường thẳng AB , AC lần lượt tại P , Q. Chứng minh :
AB . AC = AD . AE
3. Gọi M là trung điểm đoạn thẳng BC. Chứng minh : EP = EQ và \(\widehat{PAE}=\widehat{MAC}\)
4. CHứng minh : \(AM.MD=\frac{BC^2}{4}\)
Cho Tam Giác ABC(AB<AC)Vuông Tại A và nội tiếp đường tròn (O;R) . Gọi P là trung điểm của AC và AH là đường cao của Tam Giác ABC .
1/ Chứng Minh Tứ Giác APOH nội Tiếp . Xác Định Tâm I Của Đường Tròn này.
2/ Chứng Minh (O) và (I) Tiếp Xúc Nhau .
3/ Đường Tron (I) cắt AB Tại N . Chứng Minh N,I,P Thẳng Hàng .
Mọi người giải giúp mình câu (d) của bài này với ạ
Cho tam giác ABC nhọn (AB < AC) nộp tiếp (O;R), có các đường cao BE, CF cắt nhau tại H. Gọi I,K lần lượt là trung điểm của BC, AH
a/ Chứng minh các tứ giác AEHF, BCEF nội tiếp đường tròn. Suy ra IK vuông góc EF
b/ AH cắt BC tại D. Chứng minh tam giác DEF nội tiếp đường tròn đường kính IK
c/ Các đường thẳng ED, BC cắt nhau tại M. AM cắt (O) tại N. Chứng minh HN vuông góc AM
d/ Kẻ tiếp tuyến tại B của (O) cắt ME tại S. Chứng minh 5 điểm B S N E I cùng thuộc 1 đường tròn
Cho tam giác ABC nhọn. Đường tròn tâm O đường kính BC cắt AB ở M và cắt AC ở N. Gọi H là giao điểm của BN và CM, E là trung điểm AH.
a) Chứng minh H là trực tâm của tam giác ABC.
b) Chứng minh ME là tiếp tuyến của đường tròn (O).
c) Chứng minh MN. OE = 2ME. MO
Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn tâm (O). Từ B và C vẽ hai tiếp tuyến của đường tròn, hai tiếp tuyến này cắt nhau ở D. Qua D vẽ một cát tuyến sonng song với AB, cát tuyến này cắt đường tròn tại các điểm M và N và cắt cạnh AC tai I
a) Chứng minh tứ giác OBDC nội tiếp đường tròn (O)
b) Chứng minh I là trung điểm của dây MN