Cho ΔABC nhọn, hai đường cao BE, CF cắt nhau
tại H.
a) Chứng minh AH vuông góc với BC.
b) Gọi E, F, G, H lần lượt là trung điểm của AB, AC,
HC, HB. Chứng minh tứ giác EFGH là hình chữ
nhật.
Cho tam giác ABC có 3 góc nhọn (AB<AC). Gọi M;N;K lần lượt là trung điểm của AB;BC;AC
a) Chứng minh tứ giác AMNC là hình bình hành
b) Vẽ đường cao AH của tam giác ABC. Gọi I là điểm đối xứng với H qua M. Chứng minh AB=IH và AI song song với HC
c) Tứ giác MKNH là hình gì ? Vì sao ?
d) AH và IC lần lượt cắt MK tại E và F. Chứng minh HC-HB=2EF
Bài 1: Cho hình chữ nhật ABCD, điểm E thuộc đường chéo AC, qua E vẽ đường thẳng song song với BD cắt AD và CD lần lượt tại M và N. Vẽ hình chữ nhật DMFN. CMR: E là trung điểm của BF.
Bài 2: Cho ∆ABC nhọn có H là trực tâm. Gọi M, N, P lần lượt là trung điểm của AB, BC, CA; R, S, T lần lượt là trung điểm của HA, HB, HC. CMR: RN=MT=SP.
MK CẦN GẤP!!!!!!!!!!!!!!
cho tam giác ABC vuông tại A . có đường ca AH (H thuộc BC). E và F lần lượt là hình chiếu của H trên AB , AC
a) chứng minh AEHF là hình chữ nhật
b) Gọi I và K lần lượt là trung điểm của HB và BC . chứng minh IE song song KF
Cho tam giác ABC nhọn (AB < AC). Các đường cao AD, BM, CN của tam giác ABC cắt nhau tại H. Gọi O là trung điểm của BC, E là điểm đối xứng của H qua O. Kẻ CF vuông góc với BE tại F. Gọi K,L, R lần lượt là chân đường vuông góc kẻ từ N đến AC, AD, BC. Gọi giao điểm của DM và CN là S. CMR:
1. Ba điểm K, L, R thẳng hàng
2. HN.CS = NC.SH
3. Tia phân giác của góc BAC cắt BC tại I, kẻ đường thẳng đi qua C và vuông góc với đường thẳng AI tại P, đường thẳng CP cắt đường thẳng AO tại Q. Gọi G là trung điểm của đoạn thẳng IQ. CMR: đường thẳng PG đi qua trung điểm của đoạn thẳng AC
a) Cho ∆ABC vuông tại A có đường cao AH. Gọi E, F lần lượt là hình chiếu của H
trên AB, AC. Chứng minh AEHF là hình chữ nhật.
b) Cho ∆ABC vuông tại A. Gọi M là trung điểm BC. Vẽ D là điểm đối xứng với A
qua M. Chứng minh ABDC là hình chữ nhật.
Cho tam giác ABC có 3 góc nhọn (AB<AC). Gọi M;N;K lần lượt là trung điểm của AB;BC;AC
a) Chứng minh tứ giác AMNC là hình bình hành
b) Vẽ đường cao AH của tam giác ABC. Gọi I là điểm đối xứng với H qua M. Chứng minh AB=IH và AI song song với HC
c) Tứ giác MKNH là hình gì ? Vì sao ?
d) AH và IC lần lượt cắt MK tại E và F. Chứng minh HC-HB=2EFg
Giải giúp mình câu d) với. Cảm ơn mọi người
Cho ∆ABC nhọn. Gọi D, E, F lần lượt là trung điểm của các cạnh AC, AB, BC.
a) Tứ giác BEDF là hình gì ? Vì sao ?
b) Gọi H là trực tâm của ∆ABC. Gọi M, N, P lần lượt là trung điểm của HB, HC, HẠ. Chứng minh rằng tứ giác DEMN là hình chữ nhật.
c) Gọi O là giao điểm của MD và EN . Chứng minh rằng ba điểm O, P, F thẳng hàng.
giải cho tam giác ABC nhọn. gọi D,E,F lần lượt là trung điểm của các cạnh AB,AC,và BC. vẽ đường cao AH. chứng minh A và H lần lượt đối với nhau qua DE. tứ giác DEFH là hình thang cân