a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc BAE=góc CAF
=>ΔAEB đồng dạng với ΔAFC
b: Xét ΔDEB vuông tại E và ΔDFC vuông tại F có
góc EDB=góc FDC
=>ΔDEB đồng dạng với ΔDFC
=>DE/DF=BE/CF
=>DE*CF=DF*BE
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc BAE=góc CAF
=>ΔAEB đồng dạng với ΔAFC
b: Xét ΔDEB vuông tại E và ΔDFC vuông tại F có
góc EDB=góc FDC
=>ΔDEB đồng dạng với ΔDFC
=>DE/DF=BE/CF
=>DE*CF=DF*BE
Cho ABC nhọn, phân giác AD. Từ B và C kẻ các đường thẳng vuông góc với AD lần lượt tại E và F.
a) Chứng minh AEB đồng dạng AFC
b) Chứng minh BE.DF = CF.DE
c) Chứng minh CE, BF và phân giác góc ngoài tại A của ABC đồng quy.
Cho tam giác ABC nhọn, đường phân giác AD. Từ B và C vẽ các đường thẳng vuông góc với AD lại E và F.
a. Chứng minh: AEB đồng dạng với AFC
b. BE.DF = CF.DE
c. Trên AC lấy I sao cho \(\widehat{IDC}\) = \(\widehat{BAC}\). Chứng minh DB=DI
d. CE, BF và tia phân giác góc ngoài tại đỉnh A của tam giác ABC đồng quy tại 1 điểm
Cho tam giác ABC vuông tại A. Đường phân giác góc B cắt AC tại D, cho AB= 6cm, BC= 10cm
a) Tính AC, AD, CD
b) Từ D kẻ đường thẳng vuông góc với AC cắt BC tại K. Qua K kẻ đường thẳng vuông góc với BD tại E và cắt AB, AC lần lượt tại F,H. Chứng minh tam giác ABC đồng dạng tam giác DHK
C) Chứng minh BFDK: hình thoi
Cho tam giác ABC có AB=13cm,AC=26cm.Đường phân giác trong của góc A cắt cạnh BC tại D.Từ B và C lần lượt kẻ các đường vuông góc với đường thằng AD và cắt AD lần lượt tại M và N.
a)Chứng minh tam giác BMD đồng dạng với tam giác CND
b)Chứng minh:AC.AM=AB.AN
c)Tính tỉ số BM/CN
Cho tam giác ABC vuông tại A có AB bằng 6 cm BC = 10 cm Vẽ đường cao AH H thuộc BC a) Chứng minh tam giác ABC đồng dạng với tam giác hba b) kẻ tia phân giác AD của góc ABC tia phân giác của góc ABC cắt ah AD lần lượt tại E và F Chứng minh ae = 5/3 eh c) chứng minh bf vu0ng góc ad
cho tam giác nhọn abc. Các đường cao BD, CE cắt nhau tại H. Kẻ BI, CK cùng vuông góc với DE (I, K thuộc DE).
a) Chứng minh: AE.AB = AD. AC
b) Chứng minh tam giác ADE đồng dạng tam giác ABC
c)Gọi M là trung điểm BC. Kẻ MI vuông góc ED tại N. Chứng minh NI = NK và EI =DK
d) đường thẳng AD cắt BC tại F. Kẻ FP vuông góc ED tại P. CHứng minh PF là tia phân giác BPC
Cho tam giác ABC, phân giác AD, qua D kẻ đường thẳng song song với AB cắt AC tại E. Qua E kẻ đường thẳng song song với BC cắt AB tại F
a) Chứng minh AE=BF
b) Kẻ phân giác ngoài tại A của tam giác ABC cắt DE tại G. Chứng minh rằng E là trung điểm của DG
c) Đường thẳng vuông góc với AD tại D cắt AB, AC lần lượt tại H, K. Chứng minh AH=2FB
d) Từ E kẻ đường thẳng song song với DK cắt AD tại I.Chứng minh H, I, G thẳng hàng
Cho tam giác ABC vuông tại A (AB<AC). Vẽ đường cao AH (H thuộc BC). Gọi D là điểm đối xứng với B qua H
a) chứng minh tam giác ABC đồng dạng vs tam giác HBA
b) từ C kẻ đường thẳng vuông góc vs tia AD, cắt AD tại E. Chứng minh AH.CD=CE.AD
c) chứng minh tam giác ABC đồng dạng vs tam giác EDC và tính diện tích tam giác EDC bt AB=6cm, AC=8cm
d) bt AH cắt CE tại E, tia FD cắt AC tại K. Chứng minh KD là tia phân giác góc HKE
Giúp tôi giải câu d bài toán này với. Xin cảm ơn!
Cho tam giác nhọn ABC có ba đường cao AD, BF và CE giao nhau tại H.
a. Chứng minh : tam giác AFB đồng dạng tam giác AEC
b. Chứng minh : HB.HF = HC.HE
c. Từ D vẽ DM vuông góc với AB (M thuộc AB), DN vuông góc với AC (N thuộc AC). Chứng minh tam giác AMN đồng dạng với tam giác ACB.
d. Gọi P, Q lần lượt là hình chiếu vuông góc của D xuống BF, CE. Chứng minh 2 điểm P, Q nằm trên đường thẳng MN.