\(P=\frac{\left(a-b-c\right)\left(a+b+c\right)\left(a+b-c\right)}{\left(a+b+c\right)\left(a-b-c\right)\left(a+b-c\right)}=1\)
\(P=\frac{\left(a-b-c\right)\left(a+b+c\right)\left(a+b-c\right)}{\left(a+b+c\right)\left(a-b-c\right)\left(a+b-c\right)}=1\)
Cho a,b,c là độ dài các cạnh của một tam giác . Tính giá trị biểu thức :\(P=\frac{[a^2-\left(b+c\right)^2]\cdot\left(a+b-c\right)}{\left(a+b+c\right)\left[\left(a-c\right)^2-b^2\right]}\)
Chờ a, b, c là độ dài của 1 tam giác. Tính giá trị biểu thức
P=\(\frac{\left(a^2-\left(b+c\right)^2\right)\left(a+b-c\right)}{\left(a+b+c\right)\left(\left(a-c\right)^2-b^2\right)}\)
Bài 28 Cho a,b,c là độ dài ba cạnh của một tam giác. Tính giá trị biểu thức :
P=\(\frac{\left[a^2-\left(b+c\right)^2\right]\left(a+b-c\right)}{\left(a+b+c\right)\left[\left(a-c\right)^2-b^2\right]}\)
Bai 29 Cho biểu thức P=(b2+c2-a2)2-4b2c2
Chứng minh rằng nếu a,b,c là ba cạnh của một tam giác thì P<0
Bài 30Cho các số dương x,y,z thỏa mãn
\(\hept{\begin{cases}xy+y+z=3\\yz+y+z=8\\zx+x+z=15\end{cases}}\)
Tính giá trị biểu thức: P=x+y+z
Bài 28 Cho a,b,c là độ dài ba cạnh của một tam giác. Tính giá trị biểu thức :
P=\(\frac{\left[a^2-\left(b+c\right)^2\right]\left(a+b-c\right)}{\left(a+b+c\right)\left[\left(a-c\right)^2-b^2\right]}\)
Bai 29 Cho biểu thức P=(b2+c2-a2)2-4b2c2
Chứng minh rằng nếu a,b,c là ba cạnh của một tam giác thì P<0
Bài 30Cho các số dương x,y,z thỏa mãn
\(\hept{\begin{cases}xy+y+z=3\\yz+y+z=8\\zx+x+z=15\end{cases}}\)
Tính giá trị biểu thức: P=x+y+z
Bài 28 Cho a,b,c là độ dài ba cạnh của một tam giác. Tính giá trị biểu thức :
P=\(\frac{\left[a^2-\left(b+c\right)^2\right]\left(a+b-c\right)}{\left(a+b+c\right)\left[\left(a-c\right)^2-b^2\right]}\)
Bai 29 Cho biểu thức P=(b2+c2-a2)2-4b2c2
Chứng minh rằng nếu a,b,c là ba cạnh của một tam giác thì P<0
Bài 30Cho các số dương x,y,z thỏa mãn
\(\hept{\begin{cases}xy+y+z=3\\yz+y+z=8\\zx+x+z=15\end{cases}}\)Tính giá trị biểu thức: P=x+y+z
Cho a,b,c là 3 số đôi một khác nhau.Tính giá trị biểu thức
A=\(\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}+\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a^2\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
cho 3 số thực a,b,c thỏa mãn a+b+c=1. Tìm giá trị nhỏ nhất của biểu thức sau
\(P=\frac{2}{\left(a+b\right)\left(b+c\right)}+\frac{2}{\left(a+b\right)\left(a+c\right)}+\left(2+c\right)\left(3+a+b\right)\)
Cho a,b,c là độ dài 3 cạnh của một tam giác
CMR: \(\left(a+b\right)\sqrt{ab}+\left(a+c\right)\sqrt{ac}+\left(b+c\right)\sqrt{bc}\ge\frac{\left(a+b+c\right)^2}{2}\)
MỘT SỐ CÔNG THỨC HÌNH HỌC CỦA \(\Delta\)(Với a,b,c là các cạnh tam giác;d,m,h là phân giác,đường trung tuyến và đường cao tương ứng )
\(R=\frac{abc}{\sqrt{\left(a+b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right)}}\)
\(r=\frac{1}{2}\sqrt{\frac{\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}{a+b+c}}\)
\(d_a=\sqrt{bc-\frac{a^2bc}{\left(b+c\right)^2}}\)
\(m_a=\sqrt{\frac{2b^2+2c^2-a^2}{4}}\)
\(h_a=\frac{\sqrt{\left(a+b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}}{2a}\)