Cho a,b,c là độ dài 3 cạnh 1 tam giác, chứng minh:
\(a^3+b^3+c^3+2abc< a^2.\left(b+c\right)+b^2.\left(a+c\right)=c^2.\left(a+b\right)\)
cho a,b,c là 3 cạnh của một tam giác có chu vi bằng 6
Chứng minh: \(3\cdot\left(a^2+b^2+c^2\right)+2abc\ge52\).
Câu hỏi này thách cả cộng đồng olm từ lớp 9 trở xuống.
cho a,b,c là độ dài 3 cạnh của 1 tam giác và a + b + c = 2
Chứng minh a^2 + b^2 + c^2 + 2abc < 2
Cho a,b,c là độ dài 3 cạnh của một tam giác và a+b+c=2 CM 52/27<=a^2+b^2+c^2+2abc<2
cho a b c là độ dài 3 cạnh tam giác thỏa mãn a+b+c=6 chứng minh : 52<3(a^2+b^2+c^2)+2abc<54
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn giúp đỡ, em cám ơn nhiều ạ!
Cho a,b,c là độ dài 3 cạnh của 1 tam giác
CMR \(\sqrt{2}\left(a+b+c\right)\le\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}< \sqrt{3}\left(a+b+c\right)\)
Cho tam giác ABC có độ dài 3 cạnh a, b, c thỏa mãn \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\frac{3\left(a-b\right)\left(b-c\right)\left(c-a\right)}{abc}=9\)
Chứng minh rằng tam giác ABC đều
Cho a, b, c là độ dài 3 cạnh của tam giác
Chứng minh:
\(a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a+b\right)^2\ge a^3+b^3+c^3\)
Cảm ơn nhiều nhan
cho a,b,c là độ dài 3 cạnh tam giác chứng minh
\(a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2>a ^2+b^2+c^2\)