Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1) Cho a,b,c>0 tm a+b+c=3. Cmr \(\frac{1}{2+a^2+b^2}+\frac{1}{2+b^2+c^2}+\frac{1}{2+c^2+a^2}\le\frac{3}{4}\)
2) Cho a,b,c>0 tm \(a^2+b^2+c^2\le abc\).Cmr \(\frac{a}{a^2+bc}+\frac{b}{b^2+ca}+\frac{c}{c^2+ab}\le\frac{1}{2}\)
3) Cho a,b,c>0 tm \(\sqrt{a}+\sqrt{b}+\sqrt{c}=1\).Cmr \(\sqrt{\frac{ab}{a+b+2c}}+\sqrt{\frac{bc}{b+c+2a}}+\sqrt{\frac{ca}{c+a+2b}}\le\frac{1}{2}\)
Giúp mình mới nhé các bạn. Mình đang cần gấp
cho a, b, c là các số không âm. Chứng minh rằng:
\(\frac{bc}{a^2+2bc}+\frac{ca}{b^2+2ca}+\frac{ab}{c^2+2ab}\le1\)
Cho a, b, c là các số thực dương thỏa mãn: \(ab+bc+ca=3\)
CMR: \(\frac{1}{a^2+b^2+1}+\frac{1}{b^2+c^2+1}+\frac{1}{c^2+a^2+1}\le1\)
Bài 1 Cho a,b,c,d là 3 số không âm CMR
\(a,\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ac}{a+c}\le\frac{a+b+c}{2}\)
\(b,\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{a+d}\ge\frac{a+b+c+d}{2}\)
Bài 2 Cho a,b,c là 3 số không âm thỏa mãn a+b+c=1 CMR
\(a,\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}\le3,5\)
\(b,\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c}\le\sqrt{6}\)
Bài 3 Cho \(|x|< 1;|y|< 1CMR\) \(\frac{1}{1-x^2}+\frac{1}{1-y^2}\ge\frac{2}{1-xy}\)
Cho a,b,c>0, ab+bc+ca=3.
CMR \(\frac{1}{a^2+b^2+1}+\frac{1}{b^2+c^2+1}+\frac{1}{c^2+a^2+1}\le1\)
cho a,b,c là các số dương. CMR:
\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ac}{a+c}< \frac{1}{2}\left(a+b+c\right)\)
cho M =\(\frac{b-c}{a^2-ac-ab+bc}+\frac{c-a}{b^2-ab-cb+ca}+\frac{a-b}{c^2-bc-ac+ab}\) và N=\(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\) cmr M=2N
Cho a;b;c>0
va ab+ac+bc=3
chung minh:\(\frac{1}{^a^{^2}+b^2+1}+\frac{1}{b^2+c^2+1}+\frac{1}{c^2+a^2+1}\le1\)
Bài 1:
\(a,CMR\)\(a^2+1\ge2a\)
\(b,\)Cho a,b,c là các số không âm
\(CMR\)\(\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}\le\frac{3}{2}\)