dạng này thì chỉ có quy đồng thôi nhé mặc dù quy đồng chưa ra
dạng này thì chỉ có quy đồng thôi nhé mặc dù quy đồng chưa ra
cho a;b;c là các số thực dương thỏa mãn ab+bc+ca=1.CMR:\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge3+\sqrt{\frac{1}{a^2}+1}+\sqrt{\frac{1}{b^2}+1}+\sqrt{\frac{1}{c^2}+1}\)
cho a,b,c là số thực dương. Cmr:
\(\frac{a}{b^2+bc+c^2}+\frac{b}{c^{^2}+ca+a^2}+\frac{c}{a^2+ab+b^2}\ge\frac{a+b+c}{ab+bc+ca}\)
Cho các số dương a, b, c thỏa mãn ab+bc+ca=1.
CMR: \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge3+\sqrt{\frac{\left(a+b\right)\left(a+c\right)}{a^2}}+\sqrt{\frac{\left(b+c\right)\left(b+a\right)}{b^2}}+\sqrt{\frac{\left(c+a\right)\left(c+b\right)}{c^2}}\)
cho a,b,c là số thực dương thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le3.\)CMR : \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}+\frac{1}{2}\left(ab+bc+ca\right)\ge3\)
Cho a, b, c là các số thực dương thỏa mãn a + b + c = 3. Chứng minh rằng: \(\sqrt{\frac{a+3}{a+bc}}+\sqrt{\frac{b+3}{b+ca}}+\sqrt{\frac{c+3}{c+ab}}\ge3\sqrt{2}\)
1 . cho a, b, c là 3 số thực dương thỏa mãn a+b+c=1
Tìm GTLN \(P=\sqrt{\frac{ab}{c+ab}}+\sqrt{\frac{bc}{a+bc}}+\sqrt{\frac{ca}{b+ca}}\)
2 . Cho các số thực a , b , c > 0 thỏa mãn a+b+c=3
Chứng minh rằng : \(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\)
Cho a, b, c là các số thực dương thỏa mãn \(a+b+c=1\). CMR:
\(\sqrt{\frac{ab}{c+ab}}+\sqrt{\frac{bc}{a+bc}}+\sqrt{\frac{ca}{b+ca}}\le\frac{3}{2}\)
cho a,b,c là số thực dương. Cmr:
\(\frac{a}{b^2+bc+c^2}+\frac{b}{c^2+ca+a^2}+\frac{c}{a^2+ab+b^2}\ge\frac{a+b+c}{ab+bc+ac}\)
cho a,b,c là số thực dương. Cmr:
\(\frac{a}{b^2+bc+c^2}+\frac{b}{c^2+ca+a^2}+\frac{c}{a^2+ab+b^2}\ge\frac{a+b+c}{ab+bc+ac}\)