Áp dụng BĐT Bu-nhi-a-cốp-ski,ta có :
\(\left(a+b+c+1\right)^2=\left(a.1+\sqrt{3}.\frac{b+c+1}{\sqrt{3}}\right)^2\le\left(a^2+3\right)\left[1+\frac{\left(b+c+1\right)^2}{3}\right]\)
Từ đó bài toán đưa về :
\(\left(b^2+3\right)\left(c^2+3\right)\ge4\left[1+\frac{\left(b+c+1\right)^2}{3}\right]\)
\(\Leftrightarrow b^2c^2+3b^2+3c^2+9\ge4+\frac{4}{3}\left(b^2+c^2+2bc+2b+2c+1\right)\)
\(\Leftrightarrow b^2c^2+\frac{5}{3}b^2+\frac{5}{3}c^2+\frac{11}{3}\ge\frac{8}{3}bc+\frac{8}{3}b+\frac{8}{3}c\)
\(\Leftrightarrow b^2c^2+1-2bc+\frac{b^2+c^2-2bc}{3}+\frac{4}{3}\left(b^2-2b+1\right)+\frac{4}{3}\left(c^2-2c+1\right)\ge0\)
\(\Leftrightarrow\left(bc-1\right)^2+\frac{\left(b-c\right)^2}{3}+\frac{4}{3}\left(b-1\right)^2+\frac{4}{3}\left(c-1\right)^2\ge0\)( luôn đúng )
Dấu "=" xảy ra khi a = b = c = 1
Vậy ....