cho a;b;c là các số thực dương. CMR (a^2/b+c) + (b^2/c+a) + (c^2/a+b) >= (a+b+c)/2 ? (áp dụng BĐT bunhiacopski)
Cho a,b,c,d là các số thực. Chứng minh rằng a^2+b^2>=2ab(1). Áp dụng chứng minh các bất đẳng thức sau
a) (a^2+1)(b^2+1)(c^2+1)>=8abc
b) (a^2+4)(b^2+4)(c^2+4)(d^2+4)>=256abcd
1> cho a,b,c là các số hữu tủ khác 0 thoả mãn a+b+c=0. CMR: M= 1/a^2+ 1/b^2 + 1/c^2
2> rút gọn biểu thức sau và tìm giá trị nguyên của x để biểu thức có giá trị nguyên
M = ( x^2-2x / 2x^2+8 - 2x^2 / 8-4x+2x^2-x^3 ).( 1 - 1/x - 2/x^2 )
3> cho a,b,c là các số không âm và không lớn hơn 2 thoả mãn a+b+c=0. CMR a^2 + b^2 + c^2 <_ 5
1, Áp dụng định lý Pytago. Chứng minh rằng nếu ta có a, b, c > 0 sao cho a = m2 + n2 ; b = m2 - n2 ; c = 2mn thì a, b, c là số đo 3 cạnh của tam giác vuông.
2, Các ạnh góc vuông của một tam giác vuông có độ dài a, b và diện tích bằng S. Tính các góc của tam giác vuông đó biết (a + b)2
3, Chứng minh rằng nếu a, b, c là độ dài ba cạnh của 1 tam giác vuông (với a là độ dài cạnh huyền) thì các số x, y, z sau đây cũng là độ dài cạnh của tam giác vuông: x = 9a + 4b +8c ; y = 4a + b+ 4c ; z = 8a + 4b + 7c
- Cho biểu thức : M = (b^2 +c^2 - a^2 )^2-4b^c^2
a) Phân tích M thành 4 nhân tử bậc nhất
b) CMR : Nếu a,b,c là số đo độ dài các cạnh của một tam giác thì M<0
c) Giả sử a,b,c là các số nguyên và a+b+c chia hết cho 6 . CMR : M chia hết cho 6
cho các số a,b,c là các số thực khác không thoả mãn điều kiện 1/a+1/2b+1/c=0. Tính giá trị M=2bc/a^2+ca/4b^2+2ab/c^2
Cho a,bc là độ dài các cạnh của tam giác
a,C/m (-a+b+c)a2-(-a+b+c)(b-c)2>=0
b, C/m (a+b-c)(a-b+c)(-a+b+c)<=abc
c,4a2b2-(a2+b2-c2)2>0
d,Giả sử (1+b/a)(1+c/b)(1+a/c)=8
C/m a=b=c
Áp dụng a^3+b^3+c^3+3abc=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)
Biết 1/a+1/b+1/c=0
Tính A=bc/a^2 + ca/b^2 +ab/c^2
cho các số a,b,c thoả mãn
\(\left\{{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2=1\end{matrix}\right.\)
Tính M=\(a^4+b^4+c^4\)