Cho `a, b, c` là các số hữu tỉ thỏa mãn `a sqrt 21 + b sqrt 5 + c sqrt 2023 =0`
Chứng minh rằng `a = b = c = 0`.
cho a,b,c là những số hữu tỉ khác 0 và a=b+c
chứng minh rằng : \(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}\) là một số hữu tỉ
Cho a,b,c là các số hữu tỉ khác 0 và a =b +c
Chứng minh rằng : \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\)là một số hữu tỉ
Bài 1 :
a) Cho 3 số hữu tỉ a,b,c thoả mãn : \(\dfrac{1}{a}+\dfrac{1}{b}\text{=}\dfrac{1}{c}\). Chứng minh rằng : \(A\text{=}\sqrt{a^2+b^2+c^2}\) là số hữu tỉ.
b) Cho 3 số x,y,z đôi một khác nhau . Chứng minh rằng : \(B\text{=}\sqrt{\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{\left(y-z\right)^2}+\dfrac{1}{\left(z-x\right)^2}}\) là một số hữu tỉ.
Cho a,b,c là những số hữu tỉ khác 0 và a=b+c
Chứng minh rằng \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\)là một số hữu tỉ
Cho a,b,c là các số hữu tỉ khác 0 và a =b +c
Chứng minh rằng : \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\) là một số hữu tỉ
Cho trước số hữu tỉ m sao cho \(\sqrt[3]{m}\) là số vô tỉ. tìm các số hữu tỉ a, b, c để \(a\sqrt[3]{m^2}+b\sqrt[3]{m}+c=0\)
Cho a, b, c, d là các số hữu tỉ thỏa mãn a+b+c+d=0. Chứng minh rằng \(\sqrt{\left(ab-cd\right)\left(bc-da\right)\left(ca-bd\right)}\)là một số hữu tỉ
Cho trước số hữu tỉ m sao cho \(\sqrt[3]{m}\)là số vô tỉ. Tìm các số hửu tỉ a,b,c để : \(a\sqrt[3]{m^2}+b\sqrt[3]{m}+c=0\)