\(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}=2\Rightarrow\dfrac{1}{1+a}=1-\dfrac{1}{1+b}+1-\dfrac{1}{1+c}=\dfrac{b}{1+b}+\dfrac{c}{1+c}\)
\(\Rightarrow\dfrac{1}{1+a}\ge2\sqrt{\dfrac{bc}{\left(1+b\right)\left(1+c\right)}}\)
Hoàn toàn tương tự, ta có:
\(\dfrac{1}{1+b}\ge2\sqrt{\dfrac{ac}{\left(1+a\right)\left(1+c\right)}}\)
\(\dfrac{1}{1+c}\ge2\sqrt{\dfrac{ab}{\left(1+a\right)\left(1+b\right)}}\)
Nhân vế với vế:
\(\dfrac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge\dfrac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
\(\Rightarrow abc\le\dfrac{1}{8}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{2}\)