Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho số thực dương a,b,c thỏa mãn abc=1.CMR: (ab/2a+b+3ab)+(bc/2b+c+3bc)+(ca/2c+a+3ca)</=(1/2)
Cho a,b,c là các số thực dương thỏa mãn a+b+c=1. Tìm GTNN của M=1/18(ab+bc+ca)-a^2/3a+1-b^2/3b+1-c^2/3c+1
Cho a,b,c là các số dương thỏa mãn: a + b + c = 3. Tìm GTNN của:
\(P=a^2+b^2+c^2+\frac{ab+bc+ca}{a^2b+b^2c+c^2a}\)
Cho a, b, c là các số thực dương thay đổi thỏa mãn điều kiện: a+b+c=1.
Tìm GTNN của biểu thức:
M=14(\(a^2\)+\(b^2\)+\(c^2\))+\(\dfrac{ab+ac+bc}{a^2b+b^2c+c^2a}\)
Cho a,b,c là các số dương thỏa mãn a+b+c=6. Tìm GTNN của Q=2/a+2/b+2/c
Cho a,b,c là các số dương thỏa mãn a+b+c+ab+bc+ca=6abc. Tìm GTNN của P = \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)
Cho a, b là các số dương thỏa mãn a+b=6 . Tìm GTNN của A= 4/a + 1/ab
cho các số dương a,b,c thỏa mãn ab+a+b=3
tim GTNN của a2 +b2
Bài 1: Cho a,b,c là các số thực dương thỏa nãm a+b+c=1. Tìm GTNN của biểu thức
\(H=\frac{a+bc}{b+c}+\frac{b+ca}{c+a}+\frac{c+ab}{a+b}\)
Bài 2:Cho a,b là các số thực dương thỏa mãn \(a^2-6ab-2b^2=0\)
Tính giá trị của biểu thức \(P=\frac{ab}{a^2+2b^2}\)