Cho a, b, c là các số dương thỏa mãn:\(a^2+2b^2\le3c^2\). Chứng minh:
\(\frac{1}{a}+\frac{2}{b}\ge\frac{3}{c}\)
Cho a,b,c là các số dương thỏa mãn \(a^2+2b^2\le3c^2\).Chứng minh \(\frac{1}{a}+\frac{2}{b}\ge\frac{3}{c}\)
BÀI NÀY CÓ ÁP DỤNG ĐƯỢC SVAC-XƠ KO CÁC BẠN
chứng minh\(\frac{1}{a}+\frac{2}{b}\ge\frac{3}{c}\)
biets a.b.c thực dương thoa mãn \(a^2+2b^2\le3c^2\)
Cho a,b,c là các số thực dương thỏa mãn \(a^2b^2+b^2c^2+c^2a^2\ge a^2b^2c^2\). Chứng minh rằng:
\(\frac{a^2b^2}{c^3\left(a^2+b^2\right)}+\frac{b^2c^2}{a^3\left(b^2+c^2\right)}+\frac{c^2a^2}{b^3\left(c^2+a^2\right)}\ge\frac{\sqrt{3}}{3}\).
cho a,b,c thõa mãn \(a^2+2b^2\le3c^2\)
Chứng minh \(\frac{1}{a}+\frac{2}{b}\ge\frac{3}{c}\)
Cho các số thực dương a,b,c thỏa mãn \(a^2+b^2+c^2=3\). Chứng minh rằng:
\(\frac{2a^2}{a+b^2}+\frac{2b^2}{b+c^2}+\frac{2c^2}{c+a^2}\ge a+b+c\)
Cho a;b;c là các số dương thỏa mãn a+b+c=3. Chứng minh rằng: \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)
Cho a,b,c là các số thực dương thỏa mãn a2 + b2 + c2 = 3abc
Chứng minh rằng : \(\frac{a}{b^2c^2}+\frac{b}{c^2a^2}+\frac{c}{a^2b^2}\ge\frac{9}{a+b+c}\)
Cho a,b,c là các số dương thỏa mãn a+b+c=3. CMR
\(\frac{1}{2a^2+3}+\frac{1}{2b^2+3}+\frac{1}{2c^2+3}\ge\frac{3}{5}\)