Cho a;b;c;d là các số hữu tỉ dương và a/b=c/d cmr (a+2c)(bd)=(a+c)(b+2d)
Cho các số a,b,c,d nguyên dương đôi một khác nhau thỏa mãn :
\(\frac{2a+b}{a+b}+\frac{2b+c}{b+c}+\frac{2c+d}{c+d}+\frac{2d+a}{d+a}=6\)
CMR : abcd là 1 số chính phương
Cho \(\frac{a+2c}{b+2d}=\frac{2a+c}{2b+d}\) .
CMR : \(\frac{a}{b}=\frac{a+c}{b+d};\frac{2a-c}{2b-d}=\frac{a-2c}{b-2d};\frac{a+2b}{a-b}=\frac{c+2d}{c-d}\)
cmr ta có tỉ lệ thức a/b=c/d nếu có một trong các đẳng thức sau:
a, 2a+b/a-2b=2c+d/c-2d
b, (a+2c)(b-d)=(a-c)(b+2d) giả thiết các tỉ lệ thức đều có nghĩa
Cho A=(2a+b+c)/(a+b+c)+(2b+c+d)/(b+c+d)+(2c+d+a)/(c+d+a)+(2d+a+b)/d+a+b với a,b,c,d thuộc N.Chứng mình A không là số nguyên
Cho a,b,c,d là các số thực thỏa mãn : \(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)+2d
Tính M =\(\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\left(b,d\ne0\right)\).Chứng minh rằng
\(\dfrac{2a+b}{2a-b}=\dfrac{2c+d}{2c-d}\)
\(\dfrac{2a+b}{a-2b}=\dfrac{2c+d}{c-2d}\)
CHo a,b,c,d > 0 thỏa mãn a/b=c/d.
CMR ( a+2c/b+2d)^2 = a^2+2c^2/ b^2+ 2d^2
cho các số dương a,b,c,d thỏa mãn \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\) khi đó giá trị của biểu thức \(A=\frac{2a-b}{c+d}+\frac{2b-c}{a+d}+\frac{2c-d}{a+b}+\frac{2d-a}{b+c}\) là