Áp dụng BĐT AM-GM ta có \(\text{∑}\frac{3}{b+c-a}\ge3\sqrt[3]{\frac{abc}{\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}}\ge3\)
Dấu đẳng thức xảy ra khi và chỉ khi a = b = c.
Áp dụng BĐT AM-GM ta có \(\text{∑}\frac{3}{b+c-a}\ge3\sqrt[3]{\frac{abc}{\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}}\ge3\)
Dấu đẳng thức xảy ra khi và chỉ khi a = b = c.
Cho a,b,c là độ dài ba cạnh của một tam giác. CMR:\(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\)
Cho \(a,b,c\) là ba cạnh của tam giác CMR \(A=\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\)
Cho 3 cạnh của 1 tam giác CMR
\(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\)
Cho a;b;c là 3 cạnh tam giác
CMR: \(\sqrt{\frac{a}{b+c-a}}+\sqrt{\frac{b}{c+a-b}}+\sqrt{\frac{c}{a+b-c}}\ge3\)
Cho a, b, c là độ dài ba cạnh của một tam giác. Chứng minh rằng:
\(\frac{a}{b+c-a}+\frac{b}{c+a-b}+\frac{c}{a+b-c}\ge3\)
bài 1:Cho 3 số a,b,c có tổng là 1
CMR: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)
bài 2 cho a,b,c là 3 cạnh của tam giác:
CMR:\(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\)
Cho a, b, c là 3 cạnh của một tam giác. CMR:
a, \(1< \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< 2\)
b, \(\frac{a}{b+c-a}+\frac{b}{c+a-b}+\frac{c}{a+b-c}\ge3\)
Cho a,b,c là 3 cạnh của một tam giác .Chứng minh:
\(A=\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\)
Cho a,b,c là dộ dài ba cạnh của một tam giác
Chứng minh :\(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\)
MÌNH TICK CHO BẠN NÀO LÀM ĐÚNG NHA