Cho 3 số nguyên a, b, c thỏa mãn a+b+c=1 Chứng minh rằng P= (ab+c)(bc+a)(ca+b) là số chính phương
Cho a, b, c là các số thực thỏa mãn a ≥ 3 và abc = 1. Tìm giá trị nhỏ nhất của biểu thức P = \(\dfrac{2}{3}\).a2 + b2 + c2 - (ab + bc + ca).
Câu 1. Phân tích đa thức thành nhân tử
a) x 2 + 4xy + 3y2
b) x 3 – y 3 + z3 + 3xyz
c) x 4 + 2x2 – x + 2
Câu 2. Chứng minh rằng a = b = c nếu có một trong các điều kiện sau:
a) a 2 + b2 + c2 = ab + bc + ca
b) (a + b + c)2 = 3(a2 + b2 + c2 )
c) (a + b + c)2 = 3(ab + bc + ca)
Câu 3. Chứng minh rằng với số tự nhiên n thì A = n(n+1)(n+2)(n+3) + 1 là số chính phương.
Câu 4. Tìm x thỏa mãn a) (x – 1)3 + (x – 3)3 = (2x – 4)3 b) (2x – 1)3 + (x + 3)3 = (3x + 2)3 c) (2x + 1)3 + (3x + 3)3 + (-5x - 4)3 = 0
cho các số dương a b c khác 1 thỏa mãn abc<1 cmr a2 + b2 +c2 -2(ab+bc+ca) > -3
cho a,b,c là số nguyên
ab+bc+ac=1
CMR: (a2+1)(b2+1)(c2+1) là một số chính phương
Cho a, b, c là 3 số nguyên a; b; c thỏa mãn ab + bc + ca = 1
Chứng minh: (a2 + 1)(b2 + 1)(c2 + 1) là số chính phương
cho a,b, thỏa mãn điều kiện a2 b2 c2 1 chứng minh abc 2 1 a b c ab bc ac ≥0
Cho a, b, c, d thỏa mãn a + b + c + d = 0; ab + ac + bc = 1. Rút gọn biểu thức P = 3(ab − cd)(bc − ad)(ca − bd) (a 2 + 1)(b 2 + 1)(c 2 + 1) ?
A. -1
B. 1
C. 3
D. -3
Cho các số thực dương a,b,c thỏa mãn a+b+c=3
Chứng minh rằng abc(1+a2)(1+b2)(1+c2)≤8