Ta có:
\(a^2+b^2+c^2-ab-bc-ca\ge0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\left(lđ\right)\)
=> ĐPCM
Ta có:
\(a^2+b^2+c^2-ab-bc-ca\ge0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\left(lđ\right)\)
=> ĐPCM
cho a+b+c=0 cm n=1-(ab+2c^2)(bc+2a^2)(ca+2b^2) la not so duong
cho a,b,c,d la cac so nguyen duong doi 1 khac nhau thoa man a/a+b + b/b+c + c/c+d + d/d+a =2
CMR abcd la 1 so chinh phuong
cho a,b,c la 3 so khac 0 va a+b+c=0 chung minh rang 1/a^2+b^2-c^2+1/b^2+c^2-a^2+1/c^2+a^2-b^2=0
1, Cho Tg ABC nhon: Co BC=a;AC=b;Ab=c. Duong phan giac AD.
a,Tinh BD;DC theo a,b,c.
b, Tia phan giac goc ABC cat AD o I. Tinh ti so AI/DI
c, Cho BC=(AB+AC):2.Goi G la trong tam cua tam giac ABC . C/m IG//Bc
1/cho a, b,c lớn hơn hoặc bằng 0 và a+b+c=3 CMRa/(a+2bc)+b/(b+2ac)+c/(c+2a) \(\ge\)1
2/cho a, b,c lớn hơn hoặc bằng 0 và a+b+c=3 CMR:a/(2a+bc) +b/(2b+ac) +c/(2c+ab) \(\le\)1
cho ba so a,b,c khac 0 thoa man ab+bc +ac = 0 .tinh B=bc/a2 + ca/b2 + ab/c2
Cho a,b,c >=0. CMR
a^3+b^3+c^3+6abc>=(a+b+c)(ab+bc+ca)
1) Cho tam giac ABC vuong tai A co AB=6cm , AC=8cm , M la trung diem cua BC. Tinh do dài AM?
2) Cho hinh thoi ABCD, goi O la giao diem cua hai duong cheo.Ve duong thang qua B va //voi AC, ve duong thang qua C va // voi Bd, hai duong cheo do cat nhau o K
cho hinh thang abcd (ab//cd). 2 duong phan giac cua goc a va c cat nhau tai i. 2 duong phan giac cua goc b va c cat nhau tai i. Goi h la trung diem cua ad. k la trung diem cua bc biet ab=ad=10cm, bc =12cm,cd= 20 cm.Tinh hi,if,fa