Cho a , b , c là 3 số từng đôi một khác nhau và thỏa mãn :\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\). CMR :
\(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\).
CMR : nếu a,b,c là cac số đôi một khác nhau và a+b+c < 0
=> P=a3 +b3 + c3 -3abc < 0
Cho a,b,c khác nhau đôi một và khác 0 thỏa mãn a+b+c=0
CMR: \(\frac{a+b}{a-b}\left(\frac{a-b}{a+b}+\frac{b-c}{b+c}+\frac{c-a}{c+a}\right)=1+\frac{2c^2}{ab}\)
cho a,b,c đôi 1 khác nhau và khác 0. CMR: a+b+c=0 thì \(\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)\left(\dfrac{c}{a-b}+\dfrac{a}{b-c}+\dfrac{b}{c-a}\right)=9\)
Cho a,b,c là các số dương đôi một khác nhau sao cho a+b+c = 12. CMR trong 3 phương trình sau có 1 phương trình có nghiệm, một phương trình vô nghiệm:
\(x^2+ax+b=0\); \(x^2+bx+c=0\); \(x^2+cx+a=0\)
cho a,b,c là các số thực khác nhau đôi một và khác 0 thoã mãn:\(a^2-b=b^2-c=c^2-a\)tính gt của P=(a+b)(b+c)(c+a)
cho các số thực a,b,c khác nhau từng đôi một và thỏa mãn điều kiện: a^2-b=b^2-c=c^2-a. CMR: (a+b+1)(b+c+1)(c+a+1)=-1
cho các số thực a,b,c khác nhau từng đôi một và thỏa mãn điều kiện: a^2-b=b^2-c=c^2-a. CMR: (a+b+1)(b+c+1)(c+a+1)=-1
cho a,b,c là 3 số hữu tỉ khác nhau đôi một. cmr:
\(A=\sqrt{\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}}\) là một số hữu tỉ.