\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)-3ab\left(a+b\right)+3abc-c^3\ge0\)
\(\Leftrightarrow\left(a+b\right)^3-c^3-3ab\left(a+b-c\right)\ge0\)
\(\Leftrightarrow\left(a+b-c\right)\left(a^2+b^2+c^2+2ab+ac+bc\right)-3ab\left(a+b-c\right)\ge0\)
\(\Leftrightarrow\left(a+b-c\right)\left(a^2+b^2+c^2-ab+ac+bc\right)\ge0\)
\(\Leftrightarrow\left(a+b-c\right)\left[\left(a-\frac{b}{2}\right)^2+\frac{3b^2}{4}+c^2+ac+bc\right]\ge0\) (1)
Do a; b; c là độ dài 3 cạnh của 1 tam giác nên \(a+b>c\Rightarrow a+b-c>0\)
\(\Rightarrow\left(1\right)\) luôn đúng
Nhưng dấu "=" ko xảy ra nên BĐT đã cho bị sai :(
\(a^3+b^3+3abc\ge c^3\)
\(\Leftrightarrow a^3+b^3+3abc-c^3\ge0\)
\(\Leftrightarrow a^3+b^3+3a^2b+3ab^2+3abc-3a^2b-3ab^2-c^3\ge0\)
\(\Leftrightarrow\left(a+b\right)^3-c^3-3ab\left(a+b-c\right)\ge0\)
\(\Leftrightarrow\left(a+b-c\right)\left(a^2+b^2+c^2+2ab+ca+bc\right)-3ab\left(a+b-c\right)\ge0\)
\(\Leftrightarrow\left(a+b-c\right)\left(a^2+b^2+c^2-ab+ca+bc\right)\ge0\)
\(\Leftrightarrow\left(a+b-c\right)\cdot\frac{1}{2}\cdot\left[\left(a-b\right)^2+\left(a+c\right)^2+\left(b+c\right)^2\right]\ge0\)
( luôn đúng với \(a;b;c\) là 3 cạnh tam giác )
Dấu "=" xảy ra \(\Leftrightarrow\left[{}\begin{matrix}a+b=c\\\left\{{}\begin{matrix}a=b\\a=-c;b=-c\end{matrix}\right.\end{matrix}\right.\)
Mà \(a;b;c>0\Leftrightarrow a+b=c\)