cho các số a,b,c thỏa mãn 3a-2b/4=2c-4a/3=4b-3c/2 tính giá trị biểu thức A=3a+2b-c/3a-2b+c + 2a^2-b^2+c^2/2a^2+b^2-c^2
Tính giá trị biểu thức Q=a3+b3+c3/abc với a,b,c thoả mãn:(3a-2b)2+|4b-3c| ≤ 0.
Tính giá trị biểu thức:
\(Q=\dfrac{a^3+b^3+c^3}{abc}\) với \(a,b,c\) thỏa mãn: \(\left(3a-2b\right)^2+\left|4b-3c\right|\le0\)
Cho a+b+c+d ≠ 0 và \(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{b+a+d}=\dfrac{d}{c+b+a}\)
Tính giá trị biểu thức:
P = \(\dfrac{2a+5b}{3c+4d}-\dfrac{2b+5c}{3d+4a}+\dfrac{2c+5d}{3a+4b}+\dfrac{2d+5a}{3c+4b}\)
Cho a+b+c+d ≠ 0 thỏa mãn:
\(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{b+a+d}=\dfrac{d}{c+b+a}\)
Tính P = \(\dfrac{2a+5b}{3c+4d}+\dfrac{2b+5c}{3d+4a}+\dfrac{2c+5d}{3a+4b}+\dfrac{2d+5a}{3c+4b}\)
Cho a+b+c+d khác 0 và \(\frac{a}{b+c+d}\)=\(\frac{b}{a+c+d}\)=\(\frac{c}{b+a+d}\)=\(\frac{d}{c+b+a}\)
Tính giá trị biểu thức P=\(\frac{2a+5b}{3c+4d}\)- \(\frac{2b+5c}{3d+4a}\)- \(\frac{2c+5d}{3a+4b}\)- \(\frac{2d+5a}{3c+4b}\)
cho a,b >0 thỏa mãn:a2+2b=4b2-a
tính giá trị biểu thức M=a2+5a+4b2-10b-4ab+2018
cho a,b,c là 3 số dương thỏa mãn : 3a-b /c = 3b - c /a = 3c -a / b
tính giá trị biểu thức A= a/2b-3c + b/2c-3a + c/2a-3b
Cho a , b ,c ,d thỏa mãn : \(\frac{a}{a+2b}=\frac{c}{c+2d}\). Tính \(\frac{a^2d^2-4b^2c^2}{abcd}\)
Cho a ,b ,c , d thỏa mãn : \(\frac{2a+3c}{2b+3d}=\frac{3a-4c}{3b-4d}\).. Tính \(\frac{4a^3d^3-b^3c^3}{4b^3c^3-a^3d^3}\)