Cho a3+b3+c3=3abc với a,b,c khác 0 và a+b+c khác 0
tính A=\(\dfrac{\left(2016+\dfrac{a}{b}\right)+\left(2016+\dfrac{b}{c}\right)+\left(2016+\dfrac{c}{a}\right)}{2017^3}\)
giúp mình với
Cho a,b,c khác 0 thỏa mãn: a^3+b^3+c^3=3abc
Tính E=\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
Cho a,b,c là 3 số khác 0 thỏa mãn đk \(a^3+b^3+c^3=3abc\)
tính gt bt
\(M=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
1) Cho a,b,c là ba số thực thỏa mãn: abc khác 0, a+b+c khác 0 và a3+b3+c3=3abc. Chứng minh
\(\left(\frac{1}{a}+\frac{1}{b}\right)\left(\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{c}+\frac{1}{a}\right)=\frac{8}{abc}\)
cho a3+b3+c3=3abc và a+b+c\(\ne\)0. tính giá trị biểu thức N=\(\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}\)
Cho a, b là các số khác 0 và thỏa mãn \(a^3+b^3+c^3=3abc\).
Tính giá trị của biểu thức:
\(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
Cho \(a^3+b^3+c^3=3abc\) và abc khác 0; a+b+c khác 0
Chứng minh rằng
P=\(\left(\frac{1}{a}+\frac{1}{b}\right)\left(\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{c}+\frac{1}{a}\right)=\frac{8}{abc}\)
Cho \(a^3+b^3+c^3=3abc\) với a,b,c khác 0
tính giá trị biểu thức
P=\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)+\left(1+\frac{c}{a}\right)\)
Cho a3+b3+c3 = 3abc và a +b +c khác 0
a) Tính giá trị biểu thức \(\frac{a^2+b^2+c^2}{_{\left(a+b+c\right)^2}}\)
b)Chứng minh : P=\(\left(\frac{1}{a}+\frac{1}{b}\right)\left(\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{c}+\frac{1}{a}\right)=\frac{8}{abc}\)