Chứng minh rằng nếu a,b,c là các số khác 0 thoả mãn : (ab+ac)/2=(ba+bc)/3=(ca+cb)/4 thì a/3=b/5=c/15
Có a;b;c khác 0 và \(\frac{ab+ac}{2}=\frac{bc+ba}{3}=\frac{ca+cb}{4}\)
Chứng minh a/3=b/5=c/15
cmr nếu a,b,c,d khác 0 thỏa mãn ab+ac/2=ba+bc/3=ca+cb/4 thì a/3=b/5=c/15
Bài 1: Choa;b;c là các số khác 0 và a^2= bc; b^2= ab; c^2=ac.Cmr a=b=c
Bài2: Cho a;b;c là các số khác 0 thỏa mãn ab+ac/2=bc+ba/3=ca+cb/4. Chứng tỏ : a/3= b/5=c/15
Chứng minh nếu a, b, c# 0 thỏa mãn \(\frac{ab+ac}{2}=\frac{bc+ba}{3}=\frac{ca+cb}{4}thì\frac{a}{3}=\frac{b}{5}=\frac{c}{15}\)
CMR : nếu a,b,c là các số khác 0 thỏa mãn : ab+ac / 2 = bc+ba /3 = ca+cb /4 thì a/3 = b/5 = c/15
CMR : nếu a,b,c là các số khác 0 thỏa mãn : ab+ac / 2 = bc+ba /3 = ca+cb /4 thì a/3 = b/5 = c/15
CMR nếu a,b,c ≠ 0 thỏa mãn ab+ac / 2 + bc+ba / 3 + ca+cb / 4 thì a/3 = b/5 =c/15
CMR : nếu a,b,c là các số khác 0 thỏa mãn : ab+ac / 2 = bc+ba /3 = ca+cb /4 thì a/3 = b/5 = c/15