Xét ΔMAC có \(\widehat{BMC}\) là góc ngoài tại đỉnh M
nên \(\widehat{BMC}=\widehat{MAC}+\widehat{MCA}=60^0+\widehat{MCA}\)
=>\(\widehat{BMC}>60^0\)(1)
Vì M nằm giữa A và B
nên tia CM nằm giữa hai tia CA và CB
=>\(\widehat{ACM}+\widehat{BCM}=\widehat{ACB}\)
=>\(\widehat{BCM}+\widehat{ACM}=60^0\)
=>\(\widehat{BCM}< 60^0\left(2\right)\)
mà \(\widehat{B}=60^0\)(ΔABC đều)(3)
nên từ (1),(2),(3) suy ra \(\widehat{BMC}>\widehat{B}>\widehat{MCB}\)
=>BC>MC>MB
=>Chọn D