a: Xét tứ giác BFEC có góc BFC=góc BEC=90 độ
nên BFEC là tứ giác nội tiếp
b: Xét tứ giác BHCI có
BH//CI
BI//CH
Do đó: BHCI là hình bình hành
a: Xét tứ giác BFEC có góc BFC=góc BEC=90 độ
nên BFEC là tứ giác nội tiếp
b: Xét tứ giác BHCI có
BH//CI
BI//CH
Do đó: BHCI là hình bình hành
cho tam giác ABC nhọn nội tiếp đường tròn (O;R).Các đường cao AD,BE,CF của tam giác cắt nhau tại H
a) chứng minh tứ giác BCEF nội tiếp
b)gọi i là điểm đối xứng của A gua O và M là hình chiếu của O trên BC.CM tứ giác BHCI là hình bình hành và AH = 2MO
c)Gọi N là trung điểm của EF.CM R.AN=AM.OM
ai giúp mình chứng minh phần c) với
Cho có 3 góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H
a) Chứng minh rằng: tứ giác BFEC nội tiếp
b) Gọi I là điểm đối xứng của A qua O và M là trung điểm của BC. Chứng minh rằng BHCI là hình bình hành và AH=2OM
c) Gọi N là trung điểm của EF. Chứng minh rằng R.AN=AM.OM
Câu 8 (3 điểm). Cho tam giác ABC nhọn nội tiếp đường tròn tamO * (AB < AC) . 3 đường cao AD, BE, CF cắt nhau tại H a) Chứng minh tứ giác BCEF nội tiếp và OA vuông góc EF b) Gọi N là trung điểm BC. Chứng minh FC là tia phân giác của góc DFE và tứ giác EFDN nội tiếp; c) Đường thẳng vuông góc AB tại A cắt BD tại I. Qua A vẽ đường thẳng song song BC cắt EF tại M. MI cắt AH tại T; vẽ AK vuông góc MT tại K. Chứng minh T là trung điểm AH.
Cho tam giác ABC ( AB<AC) nội tiếp đường tròn (O) , bán kính R , đường cao AD,BE,CF của tam giác ABC cắt nhau tại H.
Chứng minh:
1) tứ giác BFHD,BFEC nội tiếp đường tròn
2) FH là tia phân giác của góc DFE và H là tâm đường tròn nội tiếp tam giác DEF
3) Gọi M là trung điểm BC . Chứng minh OM//AD và tứ giác DMEF nội tiếp
4) Gọi N là giao điểm AD và BF , chứng minh 1/HN - 1/HD = 2/AH
5) Gọi K là giao điểm AD và đường tròn (O) , khác A . Chứng minh HK đối xứng qua BC
Cho △ABC có ba góc nhọn nội tiếp đường tròn (O). Vẽ ba đường cao AD, BE, CF cắt nhau tại H. Gọi M là điểm đối xứng của H qua BC.
a) Chứng minh: tứ giác ABMC nội tiếpb) Gọi Q là trung điểm của AB. Chứng minh: QE là tiếp tuyến của đường tròn ngoại tiếp △EHCc) Hai tia BE và CF cắt đường tròn (O) lần lượt tại N và P. Tính giá trị biểu thức: T=AMAD+BNBE+CPCFCho tam giác ABC có ba góc nhọn, nội tiếp đường tròn tâm O (AB< AC).Các đường cao AD và CF của tam giác ABC cắt nhau tại H.
a) Chứng minh tứ giác BFHD nội tiếp
b) Gọi M là điểm bất kì trên cung nhỏ BC của đường tròn tâm O (M khác B,C) và N là điểm đối xứng của M qua BC .chứng minh tứ giác AHCN nội tiếp
c) Gọi I là giao điểm của AM và CH; J là giao điểm của AC và HN. Chứng minh góc AJI = góc ANC
d) Chứng minh rằng OA vuông góc với IJ
cho tam giác abc có 3 góc nhọn nội tiếp đường tròn (o) vẽ các đường cao be,cf của tam giác ấy gọi h là giao điểm của be và cf kẻ đg kính bk của (o)
a) Chứng minh tứ giác BCEF là tứ giác nội tiếp
b) chứng minh tứ giác AHCK là hình bình hành
c)đường tròn đường kính AC cắt BE ở M đường tròn đường kính AB cặt CF ở N.chứng minh AM=AN
cho tam giác ABC nhọn ( AB<AC) nội tiếp (O), hai đường cao BE , CF cát nhau tại H . tia AO cắt đường tròn (O) tại D. a, chứng minh tứ giác BCEF nội tiếp b, chunwgs minh tứ giác BHCD là hình bình hành c, gọi M là trung điểm của BC, tia AM cắt HO tại G. cm G là trọng tâm của tam giác ABC