\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Rightarrow a^2+b^2+c^2+2.0=0\)
\(\Rightarrow a^2+b^2+c^2=0\)
\(\Rightarrow a=b=c=0\)
\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Rightarrow a^2+b^2+c^2+2.0=0\)
\(\Rightarrow a^2+b^2+c^2=0\)
\(\Rightarrow a=b=c=0\)
cho a,b,c duong , a+b+c=1
a, tim Min A=1/(a^2+b^2) +1/(b^2+c^2) +1/(c^2+a^2) +1/ab +1/bc +1/ac
b, tìm Min B=1/(a^2+bc) +1/(b^2+ac) +1/(c^2+ab) +1/ab +1/bc +1/ac
cho a^3 b^3 + a^3 c^3 + b^3 c^3 =3a^2 b^2 c^2. chung minh rang (ab+bc)(bc+ac)(bc+ac)=-a^2 b^2 c^2. Giúp mình đi mình tích cho.
Cho các bất đẳng thức:
a > b; a < b; c > 0; c < 0; a + c < b + c; a + c > b + c; ac < bc; ac > bc
Hãy điển các bất đẳng thức thích hợp vào chỗ trống (...) trong câu sau: Nếu……… và………. thì………..
Cho a,b,c là các số dương thỏa mãn 3(ab+bc+ac)=1. Chứng minh rằng a/(a^2-bc+1) +b/(b^2-ac+1) + c/(c^2-ab+1) > 1/(a+b+c)
Cho a;b;c là độ dài 3 cạnh của 1 tam giác. Chứng minh rằng:
a) ab+ac+bc ≤ a^2+b^2+c^2 < 2(ab+ac+bc)
b) ab+ac+bc > (a^2+b^2+c^2)/2
cho tam giác ABC đòng dạng với tam giác A'B'C'. Biết AB= 3 A'B'. Kết quả nào sau đây sai
A, A=A' ; B=B' B, A'B'=1/3 AC C, AC/BC = A'C/B'C'= 3 D, AB/A'B' =AC/A'C'= BC/B'C'
cho a,b,c>0cm a+c/(a+b(c+d)+b+d/(a+d)(b+c)>=4/a+b+c+d
1. cho a,b,c thỏa mãn \(\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{a^2+ac+c^2}=1006\)
tính giá trị của m= \(\dfrac{a^3+b^3}{a^2+ab+b^2}+\dfrac{b^3+c^3}{b^2+bc+c^2}+\dfrac{c^3+a^3}{a^2+ac+c^2}\)
2. cho a+c+b=\(\dfrac{1}{2}\) , \(a^2+b^2+c^2+ab+bc+ac=\dfrac{1}{6}\).
tính p= \(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\)
3. cho a,b,c khác 0, và \(\dfrac{x^4+y^4+z^4}{a^4+b^4+c^4}=\dfrac{x^4}{a^4}+\dfrac{y^4}{b^4}+\dfrac{z^4}{c^4}\)tính \(x^2+y^9+z^{1945}+2017\)
Cho a, b,c khác 0 thỏa: 1/a + 1/b+ 1/c =0, đặt P=bc-ac/ab+ac-ab/bc+ab-bc/ac , Q=bc/ac-ab+ca/ab-bc+ab/bc-ca. Tính P.Q
a,cho (a+b+c)^2 =3(ab+ac+bc)
cmr:a=b=c
b,Cho(a-b)^2+(b-c)^2+(c-a)^2 +4(ab+bc+ca)=4(a^2+b^2+c^2)
cmr:a=b=c