Đức Anh Gamer

Cho a,b,c >0 và a+b+c=3. 

Tìm min \(P=\frac{a^2}{a+2b^3}+\frac{b^2}{b+2c^3}+\frac{c^2}{c+2a^3}\)

Nguyễn Minh Đăng
11 tháng 10 2020 lúc 14:26

Ta sẽ sử dụng phương pháp Cauchy ngược dấu để CM bài toán này

Xét \(\frac{a^2}{a+2b^3}=\frac{a\left(a+2b^3\right)-2ab^3}{a+2b^3}=a-\frac{2ab^3}{a+2b^3}\)

\(=a-\frac{2ab^3}{a+b^3+b^3}\ge a-\frac{2ab^3}{3\sqrt[3]{ab^6}}=a-\frac{2}{3}\cdot\frac{ab}{\sqrt[3]{a}}\)

\(=a-\frac{2}{3}\cdot\left(b\sqrt[3]{a^2}\right)=a-\frac{2}{3}\cdot b\cdot\sqrt[3]{a\cdot a\cdot1}\)

\(\ge a-\frac{2}{9}\cdot b\cdot\left(a+a+1\right)=a-\frac{2b}{9}\left(2a+1\right)=a-\frac{2}{9}\left(2ab+b\right)\)

Tương tự ta biến đổi với các phân thức còn lại:

\(\frac{b^2}{b+2c^3}\ge b-\frac{2}{9}\left(2bc+c\right)\) và \(\frac{c^2}{c+2a^3}=c-\frac{2}{9}\left(2ca+a\right)\)

Cộng vế 3 BĐT trên lại ta được: \(P\ge\left(a+b+c\right)-\frac{2}{9}\left[2\left(ab+bc+ca\right)+\left(a+b+c\right)\right]\)

\(\ge3-\frac{2}{9}\left[2\cdot\frac{\left(a+b+c\right)^2}{3}+3\right]=3-\frac{2}{9}\left(2\cdot3+3\right)=1\)

Dấu "=" xảy ra khi: \(a=b=c=1\)

Vậy Min(P) = 1 khi a = b = c = 1

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
An Vy
Xem chi tiết
Sông Ngân
Xem chi tiết
An Vy
Xem chi tiết
Baek Hyun
Xem chi tiết
Baek Hyun
Xem chi tiết
Phạm Văn Việt
Xem chi tiết
phan tuấn anh
Xem chi tiết
Nguyen Viet Anh
Xem chi tiết
No choice
Xem chi tiết