\(\sum\frac{1}{1+a^3+b^3}\le\sum\frac{1}{1+ab\left(a+b\right)}=\sum\frac{1}{ab\left(a+b+c\right)}=\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}=1\)
\(\sum\frac{1}{1+a^3+b^3}\le\sum\frac{1}{1+ab\left(a+b\right)}=\sum\frac{1}{ab\left(a+b+c\right)}=\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}=1\)
1. Cho a,b,c > 0 thõa mãn abc = 1. CM: \(\frac{a}{a+b^4+c^4}+\frac{b}{b+c^4+a^4}+\frac{c}{c+a^4+b^4}\le1\)
2. CHo 1 < = a,b,c < = 3. thõa mãn a + b + c = 3. CM: \(a^2+b^2+c^2\le14\)
Cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\) (abc khác 0,a+b+c khác 0).Chứng minh \(\frac{1}{a^3}+\frac{1}{b^3^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^#}}}}}}}}}}}}}}}}+\frac{1}{c^3}=\frac{1}{a^3+b^3+c^3}\)
Cho a, b, c là các số dương thỏa mãn abc = 1. Chứng minh rằng:
\(\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{c^3+a^3+1}\) ≤ 1
Cho 3 số a,b,c khác 0 và thỏa mãn \(a\left(\frac{1}{b}+\frac{1}{c}\right)+b\left(\frac{1}{c}+\frac{1}{a}\right)+c\left(\frac{1}{a}+\frac{1}{b}\right)=-2\) và a3 + b3 + c3 = 1. CMR
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Cho a,b,c là 3 số thực dương thỏa mãn abc = 1. CMR:
\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{3}{2}\)
1. Cho 3 số dương x, y, z thỏa mãn x+y+z=1. TÌM GTNN của biểu thức: A=\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
2. Cho a, b,c>0 và a+b+c=3. Tìm GTNN của biểu thức S=\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\).
3. CHo x,y,z là 3 số thực dương thỏa mãn đk: x+y+z≤ 6.
CM: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\) ≥ \(\frac{3}{2}\).
4. Cho 4 số dương a, b,c, d . CMR \(a^4+b^4+c^4+d^4\) ≥ 4abcd.
1 ) Cho a , b , c là các số dương thỏa mãn : \(\left(1+\frac{a}{b}\right).\left(1+\frac{b}{c}\right).\left(1+\frac{c}{a}\right)=8\)
Tính giá trị của biểu thức \(P=\frac{a^3+b^3+c^3}{abc}\)
2 . Cho a , b , c là 3 số dương thỏa mãn : \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\) . Tìm giá trị lớn nhất của biểu thức :
\(Q=abc\)
Bài 1: a) Cho x>0,y>0 và m,n là hai số thực .Chứng minh rằng \(\frac{m^2}{x}+\frac{n^2}{y}\) ≥ \(\frac{\left(m+n\right)^2}{x+y}\)
b)Cho a,b,c là 3 số dương thỏa mãn abc=1.Chứng minh rằng : \(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\) ≥\(\frac{3}{2}\)
Cho ba số dương a,b,c thỏa mãn abc=1. Chứng minh rằng
\(\frac{1}{a^2+2b+3}+\frac{1}{b^2+2c+3}+\frac{1}{c^2+2a+3}\le\frac{1}{2}\)