(chụp lại đề trước khi giải để chắc chắn mình không spam:)) Ok, thế thì bất đẳng thức sai với \(a=b=c=4\)
(chụp lại đề trước khi giải để chắc chắn mình không spam:)) Ok, thế thì bất đẳng thức sai với \(a=b=c=4\)
Cho a,b,c>0 thỏa mãn a+b+c=3. CMR: \(\frac{a^2}{a+2b^2}+\frac{b^2}{b+2c^2}+\frac{c^2}{c+2a^2}\ge1\)
Cho a,b,c>0. CMR
\(\frac{a}{\sqrt{a^2+8bc}}+\frac{b}{\sqrt{b^2+8ca}}+\frac{c}{\sqrt{c^2+8ab}}\ge1\)
cho các số thực dương a,b,c>0 thỏa mãn abc=1 . CMR
\(\frac{a^2}{b^2\left(c+2\right)}+\frac{b^2}{c^2\left(a+2\right)}+\frac{c^2}{a^2\left(b+2\right)}\ge1\)
Biết : a,b,c>0 và a+b+c=3. CMR
\(\frac{a^2}{a+2b^2}+\frac{b^2}{b+2c^2}+\frac{c^2}{c+2a^2}\ge1\)
cho a,b,c>0 thỏa mãn a+b+c=3. CMR:
\(\frac{1}{2ab^2+1}+\frac{1}{2bc^2+1}+\frac{1}{2ca^2+1}\ge1\)
Cho \(a\ge1,b\ge1,c\ge1\) CMR
\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge\frac{3}{abc+1}\)
1,cho a,b,c>0 . CMR: \(\frac{b}{a+3b}+\frac{c}{b+3c}+\frac{a}{c+3a}\le\frac{3}{4}\)
2,CHo a,b,c>0 thỏa mãn a+b+c <= ab+bc+ca
CMR: \(\frac{1}{1+a+b}+\frac{1}{1+b+c}+\frac{1}{1+c+a}\le1\)
3, Cho a,b,c>0 thoaor mãn a+b+c=3
CMR: \(\frac{1}{2ab^2+1}+\frac{1}{2bc^2+1}+\frac{1}{2ca^2+1}\ge1\)
Dùng bđt bunhiacopxki nha
Cho a, b, c> 0 và a+b+c=3. CM: \(\frac{a^2}{b+2}+\frac{b^2}{c+2}+\frac{c^2}{a+2}\ge1\)
cho a;b;c là các số thực dương thỏa mãn a2+b2+c2=1.CMR:\(\frac{a^2}{1+b-a}+\frac{b^2}{1+c-b}+\frac{c^2}{1+a-c}\ge1\)