Ta có: \(a+b+c=1\) nên ta được \(1+b-a>0\Rightarrow\frac{a}{1+b-a}>0\)
Ta dễ dàng có thể thấy được là: \(1-\left(a-b\right)^2\le1\) do đó ta có:
\(\frac{a}{1+b-a}\ge\frac{a\left[1-\left(a-b\right)^2\right]}{1+b-a}=a\left(1+a-b\right)\)
Tương tự như trên:
\(\frac{b}{1+c-b}\ge b\left(1+b-c\right);\frac{c}{1+a-b}\ge c\left(1+b-a\right)\)
Cộng theo vế các BĐT trên ta được: \(\frac{a}{1+b-a}+\frac{b}{1+c-b}+\frac{c}{1+a-c}\ge a\left(1+a-b\right)+b\left(1+b-c\right)+c\left(1+c-a\right)\)
Bài sẽ hoàn tất nếu chỉ ra được: \(a\left(1+a-b\right)+b\left(1+b-c\right)+c\left(1+c-a\right)\ge1\)
Hay: \(a+b+c+a^2+b^2+c^2-\left(ab+bc+ac\right)\ge1\)
Ta thấy: \(a^2+b^2+c^2\ge ab+bc+ac\) (luôn đúng)
Vậy bđt được cm
(Không chắc)
Băng god quá, ganh hong lại:
\(VT\ge\frac{\left(a+b+c\right)^2}{\left(a+ab-a^2\right)+\left(b+bc-b^2\right)+\left(c+ca-c^2\right)}\)
\(=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)+\left(ab+bc+ca-a^2-b^2-c^2\right)}\ge\frac{\left(a+b+c\right)^2}{a+b+c}=1\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)